Skip to main content
Log in

Influence of the epoxidation degree of a polystyrene–polybutadiene–polystyrene (SBS) triblock copolymer on the compatibilization with an organomodified nanoclay

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the addition of organophilic-modified montmorillonite into polystyrene–polybutadiene–polystyrene (SBS) triblock copolymers was investigated with and without the use of epoxidized SBS as a compatibilization agent. The nanocomposites were prepared by melting mixture at 60 rpm and 130 °C. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), tensile tests, and dynamic-mechanical analysis (DMA). XRD and TEM showed the formation of an intercalated dispersion of clay platelets oriented on the SBS surface. The AFM showed the typical lamellar microstructure of the styrene and butadiene phases of SBS. The estimation of the average distance between the styrene lamellae by AFM analysis showed that the platelets are anchored between the phases, and this structural feature caused an increase in elastic modulus. DMA analysis showed that the T g of butadiene decreased in the nanocomposites. The decrease of the T g and the increase in the elastic modulus are correlated to mechanisms at the micro- and the macro-scales, respectively. The decrease in the T g indicates flexibilization at the interface, whereas the intercalation of the platelets restricted the interphase macroscale deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peponi L, Tercjak A, Torre L, Mondragon I, Kenny JM (2009) Nanostructured physical gel of SBS block copolymer and Ag/DT/SBS nanocomposites. J Mater Sci 44:1287–1293. doi:10.1007/s10853-009-3277-2

    Article  Google Scholar 

  2. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  3. Adhikari R, Henning S, Lebek W, Godehardt R, Ilisch S, Michler GH (2006) Structure and properties of nanocomposites based on SBS block copolymer and alumina. Macromol Symp 231:116–124

    Article  Google Scholar 

  4. Spoljaric S, Shanks RA (2012) Novel elastomer dye-functionalised POSS nanocomposites: enhanced colourimetric, thermomechanical and thermal properties. eXPRESS Polym Lett 6:354–372

    Article  Google Scholar 

  5. Chen Z, Feng R (2009) Preparation and characterization of poly(styrene-b-butadiene-b-styrene)/montmorillonite nanocomposites. Polym Comp 30:281–287

    Article  Google Scholar 

  6. Aggarwal SL (1976) Structure and properties of block polymers and multiphase polymer systems: an overview of present status and future potential. Polymer 17:938–956

    Article  Google Scholar 

  7. Konrad M, Knoll A, Krausch G, Magerle R (2000) Volume imaging of an ultrathin SBS triblock copolymer film. Macromolecules 33:5518–5523

    Article  Google Scholar 

  8. Wang C (2001) Tear strength of styrene–butadiene–styrene block copolymers. Macromolecules 34:9006–9014

    Article  Google Scholar 

  9. Lewis PR, Prince C (1969) Morphology of ABA block polymers. Nature 223:494–495

    Article  Google Scholar 

  10. Carastan DJ, Demarquette NR, Vermogen A, Masenelli-Varlot K (2008) Linear viscoelasticity of styrenic block copolymers–clay nanocomposites. Rheol Acta 47:521–536

    Article  Google Scholar 

  11. Hasegawa N, Usuki A (2003) Arranged microdomain structure induced by clay silicate layers in block copolymer-clay nanocomposites. Polym Bull 51:77–83

    Article  Google Scholar 

  12. Silva AS, Mitchell CA, Tse MF, Wang H-C, Krishnamoorti R (2001) Effect of silicate layer anisotropy on cylindrical and spherical microdomain ordering in block copolymer nanocomposites. J Chem Phys 115:7166–7174

    Article  Google Scholar 

  13. Ha Y-H, Kwon Y, Breiner T, Chan EP, Tzianetopoulou T, Cohen RE, Boyce MC, Thomas EL (2005) An orientationally ordered hierarchical exfoliated clay-block copolymer nanocomposite. Macromolecules 38:5170–5179

    Article  Google Scholar 

  14. Dayma N, Satapathy BK (2012) Microstructural correlations to micromechanical properties of polyamide-6/low density polyethylene-grafted-maleic anhydride/nanoclay ternary nanocomposites. Mater Des 33:510–522

    Article  Google Scholar 

  15. Pandit R, Giri J, Michler GH, Lach R, Grellmann W, Youssef B, Saiter JM, Adhikari R (2012) Effect of epoxidation of diene component of SBS block copolymer on morphology and mechanical properties. Macromol Symp 315:152–159

    Article  Google Scholar 

  16. Jacobi MAM, Santin CK, Vigânico EM, Schuster RH (2004) Study of the epoxidation of polydienes rubbers II influence of microstructure on the epoxidation of BR with erformic acid. Kautsch Gummi Kunstst 57:82–89

    Google Scholar 

  17. Mauler RS, Barbosa RV, Silva PA, Jacobi MAM (2007) Processo de Adição de nanocarga em poli(estireno-b-butadieno-b-estireno) e poli (estireno-b-butadieno) e produtos assim obtidos. Patent PI 070 345-0

    Google Scholar 

  18. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705-1–013705-8

    Article  Google Scholar 

  19. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  20. Yu J, Wang L, Zeng X, Wu S, Li B (2007) Effect of montmorillonite on properties of styrene–butadiene–styrene copolymer modified bitumen. Polym Eng Sci 47:1289–1295

    Article  Google Scholar 

  21. Huy TA, Hai LH, Adhikari R, Weidisch R, Michler GH, Knoll K (2003) Influence of interfacial structure on morphology and deformation behavior of SBS block copolymers. Polymer 44:1237–1245

    Article  Google Scholar 

  22. Staudinger U, Satapathy BK, Thunga M, Lach R, Weidisch R, Knoll K (2007) Influence of phase miscibility and morphology on crack resistance behaviour and kinetics of crack propagation of nanostructured binary styrene–(styrene/butadiene)–styrene triblock copolymer blends. Acta Mater 55:5844–5858

    Article  Google Scholar 

  23. Thunga M, Staudinger U, Satapathy BK, Weidisch R, Abdel-Goad M, Janke A, Knoll K (2006) Influence of molecular architecture of S–S/B–S triblock copolymers on rheological properties. J Polym Sci B 44:2776–2788

    Article  Google Scholar 

  24. Staudinger U, Satapathy BK, Thunga M, Weidisch R, Janke A, Knoll K (2007) Enhancement of mechanical properties of triblock copolymers by random copolymer middle blocks. Eur Polym J 43:2750–2758

    Article  Google Scholar 

  25. Ganß M, Satapathy BK, Thunga M, Staudinger U, Weidisch R, Jehnichen D, Hempel J, Rettenmayr M, Garcia-Marcos A, Goertz HH (2009) Morphology and mechanical response of S–B star block copolymer—layered silicate nanocomposites. Eur Polym J 45:2549–2563

    Article  Google Scholar 

  26. Pellice SA, Fasce DP, Williams RJ (2003) Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. J Polym Sci B 41:1451–1461

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the Brazilian National Counsel of Technological and Scientific Development—CNPq and PRONEX/FAPERGS and FAPERJ for the financial support. The authors thank Marly A. M. Jacobi for providing the epoxidized rubber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel S. Mauler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, P.A., Pistor, V., Gonçalves, G.P.O. et al. Influence of the epoxidation degree of a polystyrene–polybutadiene–polystyrene (SBS) triblock copolymer on the compatibilization with an organomodified nanoclay. J Mater Sci 49, 3622–3628 (2014). https://doi.org/10.1007/s10853-014-8054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8054-1

Keywords

Navigation