Skip to main content
Log in

Vanadium doping on magnetic properties of H-passivated ZnO nanowires

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A comprehensive theoretical investigation on the electronic and magnetic properties of V-doped and H-passivated ZnO nanowires (NWs) was performed using spin-polarized density functional theory. The magnetic couplings of six configurations of V-doped ZnO NWs are studied in detail and stable ferromagnetism (FM) ordering is found in certain configurations. The FM mechanism originated from the strong hybridization of V 3d and O 2p around the Fermi level. Our results show that the uniaxial strain is an effective method to tune the magnetic properties of this material system. Room temperature ferromagnetism in these V-doped ZnO NWs indicates that these materials have a promising application in nanoscale spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281:951

    Article  Google Scholar 

  2. Jian WB, Wu ZY, Huang RT et al (2006) Direct observation of structure effect on ferromagnetism in nanowires. Phys Rev B 73:233308

    Article  Google Scholar 

  3. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947

    Article  Google Scholar 

  4. Sluiter MHF, Kawazoe Y, Sharma P et al (2005) First-principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys Rev Lett 94:187204

    Article  Google Scholar 

  5. Sato K, Katayama-Yoshida H (2002) First principles materials design for semiconductor spintronics. Semi Sci Technol 17:367

    Article  Google Scholar 

  6. Xiang HJ, Wei SH (2008) Enhanced ferromagnetic stability in Cu doped passivated GaN nanowires. Nano Lett 8:1825

    Article  Google Scholar 

  7. Dalpian GM, Wei SH, Gong XG et al (2006) Phenomenological band structure model of magnetic coupling in semiconductors. Solid State Commun 138:353

    Article  Google Scholar 

  8. Wang Q, Sun Q, Jena P (2007) First principles study of magnetic properties of V-doped ZnO. Appl Phys Lett 91:063116

    Article  Google Scholar 

  9. Ramachandran S, Tiwari A, Narayan J, Prater JT (2005) Epitaxial growth and properties of Zn1-xVxO diluted magnetic semiconductor thin films. Appl Phys Lett 87:172502

    Article  Google Scholar 

  10. Krithiga R, Chandrasekaran G (2009) Synthesis, structural and optical properties of vanadium doped zinc oxide nanograins. J Cryst Growth 311:4610

    Article  Google Scholar 

  11. Saeki H, Tabata H, Kawai T (2001) Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun 120:439–443

    Article  Google Scholar 

  12. Hong WK, Jo G, Sohn JI et al (2010) Tuning of the electronic characteristics of ZnO nanowire field effect transistors by proton irradiation. ACS Nano 4:811

    Article  Google Scholar 

  13. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242

    Article  Google Scholar 

  14. Cao HW, Lu PF, Cai NN et al (2014) First-principles study on electronic and magnetic properties of (Mn, Fe)-codoped ZnO. J Magn Magn Mater 352:66–71

    Article  Google Scholar 

  15. Shi HL, Duan YF (2009) First-principles study of magnetic properties of 3d transition metals doped in ZnO nanowires. Nanoscale Res Lett 4:480–484

    Article  Google Scholar 

  16. Wang Q, Sun Q, Jena P et al (2005) Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO. Appl Phys Lett 87:162509

    Article  Google Scholar 

  17. Wang Y, Perdew JP (1991) Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B 44:13298

    Article  Google Scholar 

  18. AMolina-Sanchez, Garcia-Cristbal A, Bester G (2012) Semiempirical pseudopotential approach for nitride-based nanostructures and ab initio based passivation of free surfaces. Phys Rev B 86:205430

    Article  Google Scholar 

  19. Shi HL, Duan YF (2008) Magnetic coupling properties of Mn-doped ZnO nanowires: first-principles calculations. J Appl Phys 103:073903

    Article  Google Scholar 

  20. Li YL, Zhao X, Fan WL (2011) Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study. J Phys Chem C 115:3552–3557

    Article  Google Scholar 

  21. Hong N, Sakai J, Hassini A (2005) Magnetism in V-doped ZnO thin films. J Phys 17:199

    Google Scholar 

  22. Hong N, Sakai J, Hassini A (2005) Magnetic properties of V-doped ZnO thin films. J Appl Phys 97:10D312

    Google Scholar 

  23. Venkatesan M, Fitzgerald CB, Lunney JG et al (2004) Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett 93:177206

    Article  Google Scholar 

  24. Neal JR, Behan AJ, Ibrahim RM et al (2006) Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys Rev Lett 96:197208

    Article  Google Scholar 

  25. Pan M, Nause J, Rengarajan V et al (2007) Epitaxial growth and characterization of p-type ZnO. J Elec Mater 36:457

    Article  Google Scholar 

  26. Zhou XH, Huang Y, Chen XS, Lu W (2012) Effects of uniaxial strain on magnetic interactions in Co-doped ZnO nanowires: first-principles calculations. Solid State Commun 152:19–23

    Article  Google Scholar 

  27. Lin XL, Yan SS, Zhao MW et al (2010) Long-ranged and high temperature ferromagnetism in (Mn, C)-codoped ZnO studied by first-principles calculations. J Appl Phys 107:033903

    Article  Google Scholar 

  28. Lu PF, Wu CJ, Li YL et al (2013) Investigation on structural, electronic, and magnetic properties of Mn-doped Ga12N12 clusters. J Mater Sci 48:8552. doi:10.1007/s10853-013-7674-1

    Article  Google Scholar 

  29. Li S, Jiang Q, Yang GW (2010) Uniaxial strain modulated band gap of ZnO nanostructures. Appl Phys Lett 96:213101

    Article  Google Scholar 

  30. Yang Y, Yan XH, Xiao Y, Lu D (2010) Size-dependent strain effects on electronic and optical properties of ZnO nanowires. Appl Phys Lett 97:033106

    Article  Google Scholar 

  31. Kulkarni AJ, Zhou M, Sarasamak K et al (2006) Novel phase transformation in ZnO nanowires under tensile loading. Phys Rev Lett 97:105502

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61102024), the Fundamental Research Funds for the Central Universities (No. 2012RC0401), the National Basic Research Program of China (973 Program) under Grant No. 2014CB643900 and the Open Project Program of State Key Laboratory of Functional Materials for Informatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Zhang, X., Cao, H. et al. Vanadium doping on magnetic properties of H-passivated ZnO nanowires. J Mater Sci 49, 3177–3182 (2014). https://doi.org/10.1007/s10853-014-8020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8020-y

Keywords