Skip to main content

Electrical conductivity of a novel cast 6351 Al–Al4SiC4 in situ composite

Abstract

In this research work, electrical conductivity of a novel cast 6351 Al–Al4SiC4 composite has been studied for varying Al4SiC4 particle content (2–7 vol%). Analytical models were developed on the basis of free electron theory and local resistance approach in order to predict electrical conductivity of metal matrix composites. The electrical conductivity of cast 6351 Al–Al4SiC4 composite was found to decrease with increasing Al4SiC4 content. Overprediction of results and more % deviation of the predicted electrical conductivity from experimental value were observed for local-resistance-approach-based model. However, the model developed on the basis of electron theory considering scattering of electrons at particle–matrix interface accurately predicted the experimental electrical conductivity data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Maity J (2012) Joining of aluminium based metal matrix composites. In: Magagnin L (ed) Engineered metal matrix composites: forming methods, material properties and industrial applications. Nova Science Publishers Inc, New York, USA, p 329

    Google Scholar 

  2. Chang SY, Chen CF, Lin SJ, Kattamis TZ (2003) Electrical resistivity of metal matrix composites. Acta Mater 51:6191–6302

    Article  Google Scholar 

  3. Heringhaus F, Schneider-Muntau HJ, Gottstein G (2003) Analytical modeling of the electrical conductivity of metal matrix composites: application to Ag-Cu and Cu-Nb. Mater Sci Eng A 347:9–20

    Article  Google Scholar 

  4. Efe GC, Altinsoy I, Ipek M, Zeytin S, Bindal C (2012) Effects of SiC particle size on properties of Cu–SiC metal matrix composites. Acta Phys Pol A 121:251–253

    Google Scholar 

  5. Hussain S, Barbariol I, Roitti S, Sbaizero O (2003) Electrical conductivity of an insulator matrix (alumina) and conductor particle (molybdenum) composites. J Eur Ceram Soc 23:315–321

    Article  Google Scholar 

  6. Girish BM, Basawaraj BR, Satish BM, Somashekar DR (2012) Electrical resistivity and mechanical properties of tungsten carbide reinforced copper alloy composites. Int J Compos Mater 2:37–42

    Google Scholar 

  7. Srivastava VC, Ojha SN (2005) Microstructure and electrical conductivity of Al–SiCp composites produced by spray forming process. Bull Mater Sci 28:125–130

    Article  Google Scholar 

  8. Liu D, Tuan WH (1997) Microstructure and its influence on thermal and electrical conductivity of ZrO2–Ag composites. Mater Chem Phys 48:258–262

    Article  Google Scholar 

  9. Akhtar F, Askaria SJ, Shah KA, Du X, Guo S (2009) Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Mater Charact 60:327–336

    Article  Google Scholar 

  10. El-Kady EY, Mahmoud TS, Ali AA (2011) On the Electrical and Thermal Conductivities of Cast A356/Al2O3 Metal Matrix Nanocomposites. Mater Sci Appl 2:1180–1187

    Google Scholar 

  11. Weber L, Dorn J, Mortensen A (2003) On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Mater 51:3199–3211

    Article  Google Scholar 

  12. Rayleigh L (1892) On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil Mag 34:481–502

    Article  Google Scholar 

  13. Landauer R (1978) Electrical conductivity in inhomogeneous media. AIP Conf Proc 40:2–45

    Article  Google Scholar 

  14. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann Phys (Leipzig) 24:636–679

    Article  Google Scholar 

  15. Landauer R (1952) The electrical resistance of binary metallic mixtures. J Appl Phys 23:779–784

    Article  Google Scholar 

  16. Clyne TW (2000) Thermal and electrical conduction in MMCs. In: Comprehensive composite material, vol 3. Elsevier, Amsterdam, pp 447–468

  17. Weber L, Fischer C, Mortensen A (2003) On the influence of the shape of randomly oriented, nonconducting inclusions in a conducting matrix on the effective electrical conductivity. Acta Mater 51:495–505

    Article  Google Scholar 

  18. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157

    Article  Google Scholar 

  19. McLachlan DS, Blaszkiewicz M, Newnham RE (1990) Electrical resistivity of composites. J Am Ceram Soc 73:2187–2203

    Article  Google Scholar 

  20. Ondracek G (1982) The quantitative microstructure, field, property correlation of multiphase materials. Metall 36:523–531

    Google Scholar 

  21. Ondracek G (1982) Regarding the quantitative correlation between the structure and field property of multiphase materials. II. Determination of structural characteristics by quantitative structural analysis. Metall 36:1288–1290

    Google Scholar 

  22. Ondracek G (1983) Regarding the quantitative correlation between structure and field property of multiphase materials. Pt. 3. A comparison between calculated and experimental field property readings of metallic two-phase materials. Metall 37:1016–1019

    Google Scholar 

  23. Torquato S (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44:37–76

    Article  Google Scholar 

  24. McLaughlin R (1977) A study of the differential scheme for composite materials. Int J Eng Sci 15:237–244

    Article  Google Scholar 

  25. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  Google Scholar 

  26. Dieter GE (1988) Mechanical metallurgy. McGraw-Hill Book co., Landon, p 233

    Google Scholar 

  27. Chawla N, Chawla KK (2006) Micromechanics. In: Metal matrix composite. Springer, New York, p 174

  28. Han DG, Choi GM (1998) Computer simulation of the electrical conductivity of composites: the effect of geometrical arrangement. Solid State Ionics 106:71–87

    Article  Google Scholar 

  29. Maxwel JC (1892) Electricity and magnetism, vol 1, 3rd edn. Clarendon Press, Oxford, p 440

  30. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  31. Stauffer D (1985) Introduction to percolation theory. Taylor and Francis, London

    Book  Google Scholar 

  32. Lin C, Cohen MH (1982) Quantitative methods for microgeometric modeling. J Appl Phys 53:4152–4165

    Article  Google Scholar 

  33. Luck JM (1991) Conductivity of random resistor networks: an investigation of the accuracy of the effective-medium approximation. Phys Rev B 43:3933–3944

    Article  Google Scholar 

  34. Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1:1–42

    Article  Google Scholar 

  35. Thomson JJ (1901) On the theory of electrical conduction through thin metallic films. Proc Cambridge Philos Soc 11:120–123

    Google Scholar 

  36. Stone I (1898) On the electrical resistance of thin films. Phys Rev (series I) 6:1–16

    Article  Google Scholar 

  37. Roig FS, Schoutens JE (1986) Theory of electrical resistivity of metal-matrix composites at cryogenic and higher temperatures. J Mater Sci 21:2409–2417

    Article  Google Scholar 

  38. Mondal MK, Biswas K, Maity J (2013) Development of a novel cast 6351 Al–Al4SiC4 in situ composite. J Mater Eng Perform 22:3364–3375

    Article  Google Scholar 

  39. Mondal MK, Biswas K, Maity J (2013) Microstructural characterisation of novel 6351 Al–Al4SiC4 in-situ composite. Mater Sci Tech 29:1394–1402

    Article  Google Scholar 

  40. Drude P (1900) Zur Elektronentheorie der Metalle. Ann Phys 306:566–613

    Article  Google Scholar 

  41. Keer HV (1993) Principles of the solid state. Wiley Eastern Limited, London, p 125

    Google Scholar 

  42. Inoue K, Mori S, Yamaguchi A (2003) Thermal conductivity and temperature dependence of electrical resistivity of Al4SiC4–SiC sintered bodies prepared by pulse electronic current sintering. J Ceram Soc Jpn 111:466–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Maity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mondal, M.K., Biswas, K. & Maity, J. Electrical conductivity of a novel cast 6351 Al–Al4SiC4 in situ composite. J Mater Sci 49, 2894–2903 (2014). https://doi.org/10.1007/s10853-013-7997-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7997-y

Keywords