Skip to main content
Log in

Visualization of deuterium flux and grain boundary diffusion in duplex stainless steel and Fe–30 % Ni alloy, using secondary ion mass spectrometry equipped with a Ga focused ion beam

Journal of Materials Science Aims and scope Submit manuscript

Abstract

Time of flight secondary ion mass spectrometry (TOF-SIMS) equipped with a high spatial resolution Ga focused ion beam (Ga-FIB) was applied to understand hydrogen diffusion and desorption behavior in duplex stainless steel and Fe–30 % Ni alloys. Deuterium was used as a tracer of hydrogen. Results showed that the secondary ion intensity from body-centered cubic (bcc) and face-centered cubic (fcc) Fe represents the flux of deuterium from the surface and the concentration of deuterium, respectively. The deuterium-depleted zone can be visualized from the interface between bcc and fcc phase to fcc Fe on the surface. Furthermore, direct visualization of the grain boundary diffusion of deuterium is also possible in fcc Fe–30 % Ni alloys, using Ga-FIB-TOF-SIMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. da Silva JRG, Stafford SW, McLellan RE (1976) The thermodynamics of the hydrogen-iron system. J Less Common Metals 49:407–420

    Article  Google Scholar 

  2. Hagi H (1994) Diffusion coefficient of hydrogen in iron without trapping by dislocations and impurities. Mater Trans JIM 35:112–117

    Google Scholar 

  3. Sakamoto Y, Katayama H (1982) The electrochemical determination of diffusivity and solubility of hydrogen in an austenitic type 304 steel. J Japan Inst Metals 46:805–814

    Google Scholar 

  4. Park YD, Maroef IS, Landau A, Olson DL (2002) Retained austenite as a hydrogen trap in steel welds. Weld J 81(2):27–35

    Google Scholar 

  5. Turnbull A, Hutchings RB (1994) Analysis of hydrogen atom transport in a two-phase alloy. Mater Sci Eng A177:161–171

    Article  Google Scholar 

  6. Chan SLI, Lee HL, Yang JR (1991) Effect of retained austenite of the hydrogen content and effective diffusivity of martensitic structure. Metall Trans A 22A:2579–2586

    Article  Google Scholar 

  7. Escobar DP, Depover T, Duprez L, Verbeken K, Verhaege M (2012) Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel. Acta Mater 60:2593–2605

    Article  Google Scholar 

  8. Asaoka A, Lapasset G, Aucouturier M, Lacomb (1978) Observation of hydrogen trapping in Fe–0.15 wt% Ti alloy by high resolution autoradiography. Corrosion 34:39–47

    Article  Google Scholar 

  9. Wei FG, Tsuzaki K (2006) Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall Mater Trans A 37A:331–353

    Article  Google Scholar 

  10. Asahi H, Hirakami D, Yamasaki S (2003) Hydrogen trapping behavior in vanadium-added steel. ISIJ Int 43:527–533

    Article  Google Scholar 

  11. Kawakami K, Matsumiya T (2012) Numerical analysis of hydrogen trap state by TiC and V4C3 in bcc-Fe. ISIJ Int 52:1693–1697

    Article  Google Scholar 

  12. Frank RC, Baker JE, Altstetter CJ (1982) A SIMS study of the diffusion and trapping of deuterium in 302 stainless steel. Metall Trans A 13A:581–584

    Article  Google Scholar 

  13. Ladna B, Birnbaum HK (1987) A study of hydrogen transport during plastic deformation. Acta Metall Mater 35:1775–1778

    Article  Google Scholar 

  14. Dieudonné T, Marchetti L, Jomard F, Wery M, Chéne J, Allely C, Cugy P, Scott CP (2012) SIMS analysis of deuterium absorption and diffusion in austenitic Fe–Mn–C steels. Def Diff Forum 323–325:477–483

    Article  Google Scholar 

  15. Takai K, Seki J, Homma Y (1995) Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry. Mater Trans JIM 36:1134–1139

    Google Scholar 

  16. Takai K, Chiba Y, Noguchi K, Nozue A (2002) Visualization of the hydrogen desorption process from ferrite, pearlite, and graphite by secondary ion mass spectrometry. Metall Mater Trans A 33A:2659–2665

    Article  Google Scholar 

  17. Saintier N, Awane T, Olive JM, Matsuoka S, Murakami Y (2011) Analyses of hydrogen distribution around fatigue crack on type 304 stainless steel using secondary ion mass spectrometry. Int J Hydrogen Energ 36:8630–8640

    Article  Google Scholar 

  18. Pérez TE, Garícia JO (1982) Direct observation of hydrogen evolution in the electron microscope scale. Scripta Metall 16:161–164

    Article  Google Scholar 

  19. Ichitani K, Kanno M (2003) Visualization of hydrogen diffusion in steels by high sensitivity hydrogen microprint technique. Sci Tech Adv Mater 4:545–551

    Article  Google Scholar 

  20. Yalçì HK, Edmonds DV (1995) Application of the hydrogen microprint and the microautoradiography techniques to a duplex stainless steel. Mater Charact 34:97–104

    Article  Google Scholar 

  21. Takahashi J, Kawakami K, Kobayashi Y, Tarui T (2010) The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scripta Mater 63:261–264

    Article  Google Scholar 

  22. Sekiba D, Yonemura H, Ogura S, Matsumoto M, Kitaoka Y, Yokoyama Y, Matsuzaki H, Narusawa T, Fukutani K (2011) Development of micro-beam NRA for hydrogen mapping: observation of fatigue-fractured surface of glassy alloys. Nucl Instrum Meth Phys Res B 269:627–631

    Article  Google Scholar 

  23. Ueda K, Ishikawa K, Yoshimura M (1997) Two-dimensional hydrogen analysis by time-of-flight-type electron-stimulated desorption spectroscopy. Jpn J Appl Phys 36:L1254–L1256

    Article  Google Scholar 

  24. Sakamoto T, Koizumi M, Kawasaki J, Yamaguchi J (2008) Development of a high lateral resolution TOF-SIMS apparatus for single particle analysis. Appl Surf Sci 255:1617–1620

    Article  Google Scholar 

  25. Hayashi S, Takahashi T, Kanehashi K, Kubota N, Mizuno K, Kashiwakura S, Sakamoto T, Nagasaka T (2010) Chemical state of boron in coal fly ash investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR). Chemosphere 80:881–887

    Article  Google Scholar 

  26. Tanaka T, Fujishiro T, Shigesato G, Hayashi S (2013) Ga-FIB-TOF-SIMS analysis on grain boundary segregation/precipitation of boron in steels (under review)

  27. Du YA, Ismer L, Rogal J, Hickel T, Neugebauer J, Drautz R (2011) First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. Phys Rev B 84:144121–1–144121–13

    Article  Google Scholar 

  28. Moreno I, Almagro JF, Llovet X (2002) Determination of nitrogen in duplex stainless steels by EPMA. Microchim Acta 139:105–110

    Article  Google Scholar 

  29. Herrera C, Lima NB, Kliauga AM, Padilha AF (2008) Microstructure and texture of duplex stainless steel after melt-spinning processing. Mater Charact 59:79–83

    Article  Google Scholar 

  30. De Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: review 2000. Pure Appl Chem 75:683–800

    Article  Google Scholar 

  31. Umemoto M, Yoshitake E, Tamura I (1983) The morphology of martensite in Fe–C, Fe–Ni–C and Fe–Cr–C alloys. J Mater Sci 18:2893–2904. doi:10.1007/BF00700770

    Article  Google Scholar 

  32. Benamati G, Donato A, Solina A, Valentini R, Lanza S (1994) Experimental studies on hydrogen diffusion and trapping in martensitic and austenitic stainless steels for fusion application. J Nucl Mater 212–215:1401–1405

    Article  Google Scholar 

  33. Shewmon PG (1989) Diffusion in Solids. Wiley, New York

    Google Scholar 

  34. Tsuru T, Latanision RM (1982) Grain boundary transport of hydrogen in nickel. Scripta Metall Mater 16:575–578

    Article  Google Scholar 

  35. Schober T, Dieker C (1983) Observation of local hydrogen on nickel surface. Metall Trans A 14A:2440–2442

    Article  Google Scholar 

  36. Harrison LG (1961) Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides. Trans Farad Soc 57:1191–1199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohito Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Kawakami, K. & Hayashi, Si. Visualization of deuterium flux and grain boundary diffusion in duplex stainless steel and Fe–30 % Ni alloy, using secondary ion mass spectrometry equipped with a Ga focused ion beam. J Mater Sci 49, 3928–3935 (2014). https://doi.org/10.1007/s10853-013-7956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7956-7

Keywords

Navigation