Skip to main content

Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer

Abstract

Geopolymer has been of great research interest as a material for sustainable development. As ordinary Portland cement, however, geopolymer exhibits brittle behavior with low tensile strength, ductility, and fracture toughness. This paper investigates the reinforcement of fly ash-based geopolymer with alkali-pretreated sweet sorghum fiber. The sweet sorghum fiber comes from the bagasse (residue), a waste after the juice is extracted from sweet sorghum stalks for ethanol production. Specifically, the unit weight of fly ash-based geopolymer specimens containing different contents of sweet sorghum fibers was measured. Unconfined compression, splitting tensile, and flexural tests were conducted to investigate the effect of incorporated sweet sorghum fiber on the mechanical properties of fly ash-based geopolymer. Scanning electron microscopy imaging was also performed to study the microstructure of the sweet sorghum fiber–geopolymer composite. The results indicate that the unit weight of the sweet sorghum fiber–geopolymer composite decreases with higher fiber content. Although the inclusion of sweet sorghum fiber slightly decreases the unconfined compressive strength, the splitting tensile, and flexural strengths as well as the post-peak toughness increase with the fiber content up to 2 % and then start to decrease. The splitting tensile tests also clearly show the transition from the brittle failure of the plain geopolymer specimen to the “ductile” failure of the geopolymer specimen containing sweet sorghum fiber.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Davidovits J (1994) In: Metha PK (ed.) Proceedings of V. Mohan Malhortra Symposium: concrete technology, past, present and future, ACI SP-144, p 383

  2. Malhotra VM (2000) In: Proceedings of concrete technology for a sustainable development in the 21st Century, E&FN Spon, p 226, London

  3. McCaffrey R (2002) Climate change and the cement industry, Global Cement and Lime Magazine (Environmental Special Issue). p 15

  4. Arm M: Mechanical properties of residues as unbound road materials—experimental tests on MSWI bottom ash, crushed concrete and blast furnace slag. Ph.D. Thesis, KTH Land and Water Resources Engineering, Stockholm (2003)

  5. Davidovits J (2008) Geopolymer chemistry and applications, 2nd edn. Institut Geopolymere, St. Quentin

    Google Scholar 

  6. van Jaarsveld JGS, van Deventer JSJ, Schwartzmann A (1999) The potential use of geopolymeric materials to immobilize toxic metals. Part II: material and leaching characteristics. Miner Eng 12(1):75

    Article  Google Scholar 

  7. Shi C, Fernandez-Jimenez A (2006) Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater 137(3):656

    Article  Google Scholar 

  8. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917. doi:10.1007/s10853-006-0637-z

    Article  Google Scholar 

  9. Zhang L, Ahmari S, Zhang J (2011) Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Constr Build Mater 25(9):3773

    Article  Google Scholar 

  10. Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323

    Article  Google Scholar 

  11. Ahmari S, Zhang L, Zhang J (2012) Effects of activator type/concentration and curing temperature on alkali-activated binder based on copper mine tailings. J Mater Sci 47(16):5933. doi:10.1007/s10853-012-6497-9

    Article  Google Scholar 

  12. Ahmari S, Ren X, Toufigh V, Zhang L (2012) Production of geopolymeric binder from blended waste concrete powder and fly ash. Constr Build Mater 35:718

    Article  Google Scholar 

  13. Ahmari S, Zhang L (2013) Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Constr Build Mater 40:1002

    Article  Google Scholar 

  14. Ahmari S, Zhang L (2013) Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr Build Mater 44:743

    Article  Google Scholar 

  15. Zhang L (2013) Production of bricks from waste materials: a review. Constr Build Mater 47:643

    Article  Google Scholar 

  16. Zhao Q, Nair B, Tahimian R, Balaguru P (2007) Novel geopolymer based composites with enhanced ductility. J Mater Sci 42(9):3131. doi:10.1007/s10853-006-0s27-4

    Article  Google Scholar 

  17. Zhang Y, Li S, Xu D, Wang B, Xu G, Yang D, Wang N, Liu H, Wang Y (2010) A novel method for preparation of organic resins reinforced geopolymer composites. J Mater Sci 45(5):1189. doi:10.1007/s10853-009-4063-x

    Article  Google Scholar 

  18. Pernica D, Reis PNB, Ferreira JAM, Louda P (2010) Effect of test conditions on the bending strength of a geopolymer-reinforced composite. J Mater Sci 45(3):744. doi:10.1007/s10853-009-3994-6

    Article  Google Scholar 

  19. Sun P, Wu H (2008) Transition from brittle to ductile behavior of fly ash using PVA fibers. Cem Concr Compos 30(1):29

    Article  Google Scholar 

  20. He P, Jia D, Lin T, Wang M, Zhou Y (2010) Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram Int 36(4):1447

    Article  Google Scholar 

  21. Li W, Xu J (2009) Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. J Mater Sci Eng A 505(1–2):178

    Article  Google Scholar 

  22. Li W, Xu J (2009) Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. J Mater Sci Eng A 513–514:145

    Article  Google Scholar 

  23. Merta I, Tschegg EK, Kolbitsch A (2010) Fracture mechanical properties of concrete reinforced with straw fibers. In: Proceedings of the COST strategic workshop: principles and development of bio-inspired, p 145, Vienna

  24. Pacheco-Torgal F, Jalali S (2011) Cementitious building materials reinforced with vegetable fibers: a review. Constr Build Mater 25(2):575

    Article  Google Scholar 

  25. Savastano H Jr, Warden PG, Coutts RSP (2003) Mechanically pulped sisal as reinforcement in cementitious matrices. Cem Concr Compos 25(3):311

    Article  Google Scholar 

  26. Ramakrishna G, Sundararajan T (2005) Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. Cem Concr Compos 27(5):547

    Article  Google Scholar 

  27. Yue Y, Li G, Xu X, Zhao Z (2000) Properties and microstructures of plant-fiber-reinforced cement-based composites. Cem Concr Res 30(12):1983

    Article  Google Scholar 

  28. Reis JML (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr Build Mater 20(9):673

    Article  Google Scholar 

  29. Mansur MA, Aziz MA (1983) Study of bamboo-mesh cement compostites. Int J Cem Comps Lightweight Concr 5:165

    Article  Google Scholar 

  30. Mansur MA, Aziz MA (1982) A study of jute fibre reinforced cement composites. Int J Cem Comps Lightweight Concr 4:75

    Article  Google Scholar 

  31. Savastano H Jr, Warden PG, Coutts RSP (2003) Potential of alternative fiber cements as building materials for developing areas. Cem Concr Compos 25(6):585

    Article  Google Scholar 

  32. Li Z, Wang L, Wang X (2004) Compressive and flexural properties of hemp fiber reinforced concrete. Fiber Polym 5(3):187

    Article  Google Scholar 

  33. Li Z, Wang L, Wang X (2006) Properties of hemp fiber reinforced concrete composites. Compos A 37(3):497

    Article  Google Scholar 

  34. Pacheco-Torgal F, Jalali S (2009) Vegetable fiber reinforced concrete composites: a review. In: Proceedings of recent advances in characterization, processing, design and modelling of structural and functional materials, Portugal

  35. Teixeira-Pinto A, Varela B, Shrotri K, Panandiker RSP, Lawson J (2008) Geopolymer-jute composite: a novel environmentally friendly composite with fire resistant properties. In: Proceedings of the 31st International Conference on Advanced Ceramics and Composites, p 337, Daytona Beach, Florida

  36. Alomayri T, Shaikh FUA, Low IM (2013) Characterisation of cotton fibre-reinforced geopolymer composites. Compos Part B 50:1

    Article  Google Scholar 

  37. Alzeer M, MacKenzie K (2012) Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres. J Mater Sci 47:6958. doi:10.1007/s10853-012-6644-3

    Article  Google Scholar 

  38. Alzeer M, MacKenzie K (2013) Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (Phormium tenax). Appl Clay Sci 75–76:148

    Article  Google Scholar 

  39. Ottman M (2008) Feasibility of obtaining two crops of sweet sorghum for ethanol, MAC, 2006. Forage and Grain Report (P-156), University of Arizona, Tucson, USA

  40. Bennett AS, Anex RP (2009) Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresour Technol 100(4):1595

    Article  Google Scholar 

  41. Wu X, Staggenborg S, Propheter JL, Rooney WL, Yu J, Wang D (2011) Features of sweet sorghum juice and their performance in ethanol fermentation. Ind Crops Prod 31:164

    Article  Google Scholar 

  42. Goshadrou A, Karimi K, Taherzadeh MJ (2011) Improvement of sweet sorghum bagasse hydrolysis by alkali and acidic pretreatments. In: Proceedings of the World Renewable Energy Congress 2011—Sweden, Bioenergy Technology (BE), Linköping

  43. Gram HE (1983) Durability of natural fibers in concrete. Swedish Cement and Concrete Research Institute, Stockholm

    Google Scholar 

  44. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289(11):955

    Article  Google Scholar 

  45. Bergström SG, Gram HE (1984) Durability of alkali-sensitive fibers in concrete. Int J Cem Compos Lightweight Concr 6(2):75

    Article  Google Scholar 

  46. Canovas MF, Selva NH, Kawiche GM (1992) New economical solutions for improvement of durability of Portland cement mortars reinforced with sisal fibers. Mater Struc 25(7):417

    Article  Google Scholar 

  47. De Gutiérrez RM, Díaz LN, Delvasto S (2005) Effect of pozzolans on the performance of fiber-reinforced mortars. Cem Concr Compos 27(5):593

    Article  Google Scholar 

  48. Tolêdo Filho RD, Ghavami K, England GL, Scrivener K (2003) Development of vegetable fiber-mortar composites of improved durability. Cem Concr Compos 25(2):185

    Article  Google Scholar 

  49. Tonoli GHD, Joaquim PA, Arsène MA, Bilba K, Savastano H Jr (2011) Performance and durability of cement based composites reinforced with refined sisal pulp. Mater Manuf Process 22(2):149

    Article  Google Scholar 

  50. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437

    Article  Google Scholar 

  51. Sedan D, Pagnoux C, Smith A, Chotard T (2008) Mechanical properties of hemp fiber reinforced cement: influence of the fiber/matrix interaction. J Eur Ceram Soc 28(1):183

    Article  Google Scholar 

  52. Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Comp Part A 38(8):1811

    Article  Google Scholar 

  53. Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fiber reinforced composites by applying an alkaline fiber treatment. Comp Part A 37(9):1368

    Article  Google Scholar 

  54. Andini S, Cioffi R, Colangelo F, Grieco T, Montagnaro F, Santoro L (2008) Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag 28(2):416

    Article  Google Scholar 

  55. Cioffi R, Maffucci L, Santoro L (2003) Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resour Conserv Recycl 40(1):27

    Article  Google Scholar 

  56. Al-Oraimi SK, Seibi AC (1995) Mechanical characterization and impact behavior of concrete reinforced with natural fibers. Compos Struct 32(1–4):165

    Article  Google Scholar 

  57. Kriker A, Debicki G, Bali A, Khenfer MM, Chabannet M (2005) Mechanical properties of date palm fibers and concrete reinforced with date palm fibers in hot-dry climate. Cem Concr Compos 27(5):554

    Article  Google Scholar 

  58. De Gutiérrez RM, Díaz LN, Delvasto S (2005) Effect of pozzolans on the performance of fiber-reinforced mortars. Cem Concr Compos 27(5):593

    Article  Google Scholar 

  59. Bentur A, Mindess S (1990) Fiber reinforced cementitious composite. Elsevier, New York

    Google Scholar 

  60. Sofi M, van Deventer JSJ, Mendis PA, Lukey GC (2007) Engineering properties of inorganic polymer concretes (IPCs). Cem Concr Res 37(2):251

    Article  Google Scholar 

  61. Hardjito D, Rangan BV (2005) Development and properties of low calcium fly ash-based geopolymer concrete. Research report GC1. Faculty of Engineering, Curtin University of Technology, Western Australia http://espace.lis.curtin.edu.au/

  62. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409

    Article  Google Scholar 

  63. Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geoplymer concrete. Sci Iranica A 19(5):1188

    Article  Google Scholar 

  64. Vijai K, Kumutha R, Vishnuram BG (2012) Properties of glass fibre reinforced geopolymer concrete composites. Asian J Civ Eng (Build Hous) 13(4):511

    Google Scholar 

  65. Olivia M, Nikraz H (2012) Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Design 36:191

    Article  Google Scholar 

  66. Mishra A, Choudhary D, Jain N, Kumar M, Sharda N, Dutt D (2008) Effect of concentration of alkaline liquid and curing time on strength and water absorption of geopolymer concrete. ARPN J Eng Appl Sci 3(1):14

    Google Scholar 

  67. Kumar S, Pradeepa J, Ravindra PM (2013) Experimental investigations on optimal strength parameters of fly ash based geopolymer concrete. Int J Civ Struct Civ Eng Res 2:143

    Google Scholar 

  68. Parmar MD, Bhogayata A, Arora NK (2013) Compressive and tensile strength of geopolymer concrete containing metalized plastic waste. Int J Adv Engg Tech IV(III):42

  69. Savastano H Jr, Warden PG, Coutts RSP (2005) Microstructure and mechanical properties of waste fiber-cement composites. Cem Concr Compos 27(5):583

    Article  Google Scholar 

  70. Soroushian P, Marikunte S (1992) Long-term durability and moisture sensitivity of cellulose fiber reinforced cement composites. In: Proceedings of fiber reinforced cement and concrete, p 1166, London

Download references

Acknowledgements

The sweet sorghum bagasse was provided by the Campus Agriculture Center (CAC), University of Arizona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, R., Ahmari, S. & Zhang, L. Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J Mater Sci 49, 2548–2558 (2014). https://doi.org/10.1007/s10853-013-7950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7950-0

Keywords

  • Bagasse
  • Flexural Strength
  • Geopolymer
  • Unconfined Compressive Strength
  • Fiber Content