Skip to main content
Log in

The effect of fibrous reinforcement on optical and impact performance of fibre-reinforced transparent glass composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fire-resistant laminated glass composite containing intumescent silicate as an interlayer between two glass sheets is a widely used transparent building material. To improve the impact and other mechanical properties of this composite structure, a transparent silicate matrix has been reinforced with alkali- and UV-resistant synthetic (polypropylene, polyamide 66, glass) and metallic (steel) fibres as of nonwoven webs or woven meshes. The refractive indices (RIs) of the fibres and the matrices were measured and the transparency of the laminated composites depended upon fibre RI as well as reinforcement structure. All fibres were successful in significantly enhancing impact properties of laminated glass composites with alkali-resistant glass fibres showing the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Donal IW (1995) Preparation, properties and applications of glass and glass–ceramic matrix composites. Key Eng Mater 108–110:123–144

    Article  Google Scholar 

  2. Iba H, Chang T, Kagawa Y (1997) Optomechanical fibre reinforced glass matrix composite: fabrication and properties. Ceram Eng Sci Proc 18(3):787–923

    Article  CAS  Google Scholar 

  3. Kangutkar P, Cahng T, Kagawa Y, Koczak MJ, Minakuchi H, Kanamaru K (1993) Fabrication of optically transparent SiCaON fibre reinforced glass matrix composites. Ceram Eng Proc 14:963

    Article  CAS  Google Scholar 

  4. Dericioglu AF, Kagawa Y (2002) Fail-safe light transmitting SiC fibre reinforced spinal matrix optomechanical composite. J Mater Sci 37:523–530. doi:10.1023/A:1013713506755

    Article  CAS  ADS  Google Scholar 

  5. Sun Y, Singh RN (1996) The fabrication of toughened and transparent glass composite. Ceramic Trans 74:141–151

    CAS  Google Scholar 

  6. Dericioglu AF, Zhu S, Kagawa Y (2002) Improvement of fracture resistance in a glass matrix optomechanical composite reinforcement by Al2O3–ZrO2 mini-composite. Ceramic Eng Sci 23(3):485–492

    CAS  Google Scholar 

  7. Boccaccini AR, Atiq S, Helsch G (2003) Optomechanical glass matrix composites. Comp Sci Technol 63:779–783

    Article  CAS  Google Scholar 

  8. Fankhanel B, Muller E, Weise K, Marx G (2002) Translucent fibre reinforced glass composite. Key Eng Mater 206–213:1109–1112

    Article  Google Scholar 

  9. Kim AK, Lougheed GD (1990) The protection of glazing systems with dedicated sprinklers. J Fire Prot Eng 2:49–59

    Article  Google Scholar 

  10. Razwick J (1999) The next thousand years fire-rated glazing in the next millennium. U.S. Glass 34(6):1–3

    Google Scholar 

  11. Brinkmann N (2000) Generating explosively hot ideas in fire-rated glazing. U.S. Glass. 35(4):1–5

    Google Scholar 

  12. Pilkington pyrostop®, Fire-resistant Glass Range (2013). www.pilkington.com

  13. Prewo KM, Brennan JJ, Layden K (1986) Fibre reinforced glasses and glass ceramics for high performance applications. Ceram Bull 65:305–322

    CAS  Google Scholar 

  14. Bulewicz EM, Pelc A, Kozlowski R, Miciukiewicz A (1985) Intumescent silicate-based materials: mechanism of swelling in contact with fire. Fire Mater 9:171–175

    Article  CAS  Google Scholar 

  15. Iler RK (1979) The chemistry of silica: solubility polymerization, colloid and surface properties and bio-chemistry. Wiley Inter-science, New York

    Google Scholar 

  16. Langille KB, Nguyen D, Bernt JO, Veinot DE, Murthy MK (1991) Mechanism of dehydration and intumescence of soluble silicate, Part I: effect of silica to metal oxide molar ratio. J Mater Sci 26:695–703. doi:10.1007/BF00588306

    Article  CAS  ADS  Google Scholar 

  17. Laukaitis A, Keriene J, Mikulskis D, Sinica M, Sezemanas G (2009) Influence of fibrous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products. Constr Build Mater 23(9):3034–3042

    Article  Google Scholar 

  18. Tanyildizi H (2009) Statistical analysis for mechanical properties of polypropylene fibre reinforced lightweight concrete containing silica fume exposed to high temperature. Mater Des 30(8):3252–3258

    Article  CAS  Google Scholar 

  19. Uygunoglu T (2008) Investigation of microstructure and flexural behaviour of steel fibre reinforced concrete. Mater Str/Materiaux et Constr 41(8):1441–1449

    Article  CAS  Google Scholar 

  20. Algin HM, Turgut P (2008) Cotton and limestone powder wastes as brick material. Constr Build Mater 22(6):1074–1080

    Article  Google Scholar 

  21. Akonda MH, Kandola BK, Horrocks AR (2012) Effect of alkali and ultraviolet ageing on physical, thermal and mechanical properties of fibres for potential use as reinforcing elements in glass/silicate composites. Polym Adv Tech 23:1454–1463

    Article  CAS  Google Scholar 

  22. Hearle JWS, Morton WE (1993) Physical properties of textile fibres, 3rd edn. Pub. Textile Inst, Manchester

    Google Scholar 

  23. Stroiber RE, Morse SA (1994) Crystal identification with the polarizing microscope, Chapter 2. Chapman & Hall, London

    Book  Google Scholar 

  24. Hodgkinson JM (ed) (2000) Mechanical testing of advanced fibre reinforced composites. Chapter six. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  25. Impact performance requirements for flat safety glass and safety plastic for use in buildings. British Standard Hand book, BS 6206:1981; ISBN 0580 124479

  26. Laight A, Dear JP, Farmer SJ, Jones CH (1991) Measurement of elastic moduli of composite panels at elevated temperature by vibration excitation. Meas Sci Technol 2:80–984

    Google Scholar 

  27. Warner SB, Stenquist B (eds) (1995) Fibre Science. Prentice Hall, New Jersey

    Google Scholar 

  28. Lewin M, Marcel Pearce E (eds) (1985) Hand book of fibre science and technology—fibre chemistry. Dekker Inc, New York

    Google Scholar 

  29. Matveev MA, Rabukin AI (1963) Relationship between the refractive index of water glass and their composition. Glass Ceram 20(5):254–257

    Article  Google Scholar 

  30. Yakovlev G, Kodolov V (2000) Intumescent fireproof coating based on water glass. Int J Polym Mater 47:107–115

    Article  CAS  Google Scholar 

  31. Hearle JWS (ed) (2004) High performance fibres. Woodhead Publishing Ltd and CRC Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Pilkington plc for sponsoring this project and also for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Kandola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akonda, M.H., Kandola, B.K., Horrocks, A.R. et al. The effect of fibrous reinforcement on optical and impact performance of fibre-reinforced transparent glass composites. J Mater Sci 49, 1903–1913 (2014). https://doi.org/10.1007/s10853-013-7881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7881-9

Keywords

Navigation