Skip to main content

Advertisement

Log in

Superamphiphobic aluminum alloy surfaces with micro and nanoscale hierarchical roughness produced by a simple and environmentally friendly technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, superamphiphobic (SAP) metallic aluminum (Al) alloy 2024 surfaces were produced with water and oil contact angles (CAs) of more than 150° and sliding angles of less than 10°. The two simple and environmentally friendly techniques of mechanical sanding and boiling water treatment were used to introduce micro and nanoscale roughnesses, respectively, which resulted in a hierarchical morphology. Surface energy of the rough surfaces was reduced by coating them with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane agent. SAP property was absent for samples with micro or nanoroughness only, and it emerged only after both kinds of roughnesses were introduced. The highest CAs approaching 158° for water, 156° for ethylene glycol, and 154° for peanut oil were obtained after forming hierarchical structures involving shapes of microgrooves obtained by one-directional sanding and nanograss by immersing in boiling water for 1 min. The effects of the two approaches of random and one-directional sanding using various sandpaper grit sizes, and different time periods of treatment with boiling water on the wettability of surfaces were also investigated. In addition, fundamental wetting models were used to explain the experimental results obtained. SAP Al surfaces could see a wide range of applications in fields such as self-cleaning, anti-icing, anticorrosion, oil transportation, energy harvesting, and microfluidics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deng X, Mammen L, Butt H et al (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335:67–70

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Tuteja A, Choi W, Ma M et al (2007) Designing superoleophobic surfaces. Science 318:1618–1622

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99

    Article  ADS  Google Scholar 

  4. Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2:457

    Article  PubMed  CAS  ADS  Google Scholar 

  5. Liu K, Jiang L (2012) Bio-inspired self-cleaning surfaces. Annu Rev Mater Res 42:231–263

    Article  CAS  ADS  Google Scholar 

  6. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  7. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem Res 28:988–994

    Article  CAS  Google Scholar 

  8. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  9. Cheng YT, Rodak DE, Wong CA et al (2006) Effects of micro- and nano-structures on the self-cleaning behavior of lotus leaves. Nanotechnology 17:1359

    Article  ADS  Google Scholar 

  10. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20:3517–3519

    Article  PubMed  CAS  Google Scholar 

  11. Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19:1249

    Article  CAS  Google Scholar 

  12. Cao L, Price TP, Weiss M et al (2008) Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 24:1640–1643

    Article  PubMed  CAS  Google Scholar 

  13. Tsujii K, Yamamoto T, Onda T et al (1997) Super oil-repellent surfaces. Angew Chem Int Ed Engl 36:1011

    Article  CAS  Google Scholar 

  14. Shibuichi S, Yamamoto T, Onda T et al (1998) Super water- and oil-repellent surfaces resulting from fractal structure. J Colloid Interface Sci 208:287–294

    Article  PubMed  CAS  Google Scholar 

  15. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  16. Khedir KR, Kannarpady GK, Ishihara H et al (2011) Design and fabrication of teflon-coated tungsten nanorods for tunable hydrophobicity. Langmuir 27:4661

    Article  PubMed  CAS  Google Scholar 

  17. Gao L, McCarthy TJ (2006) A perfectly hydrophobic surface (A/R = 180/180). J Am Chem Soc 128:9052

    Article  PubMed  CAS  Google Scholar 

  18. Kim H, Noh K, Choi C et al (2011) Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes. Langmuir 27:10191–10196

    Article  PubMed  CAS  Google Scholar 

  19. Kumar RTR, Mogensen KB, Boggild P (2010) Simple approach to superamphiphobic overhanging silicon nanostructures. J Phys Chem C 114:2936

    Article  CAS  Google Scholar 

  20. Meng H, Wang S, Xi J et al (2008) Facile means of preparing superamphiphobic surfaces on common engineering metals. J Phys Chem C 112:11454–11458

    Article  CAS  Google Scholar 

  21. Wu W, Wang X, Wang D et al (2009) Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids. Chem Commun 9:1043–1045

    Article  Google Scholar 

  22. Yang J, Zhang Z, Men X et al (2010) A simple approach to fabricate superoleophobic coatings. New J Chem 35:576–580

    Article  Google Scholar 

  23. Ji Seungmuk, Ramadhianti PA, Nguyen T et al (2013) Simple fabrication approach for superhydrophobic and superoleophobic Al surface. Microelectron Eng 111:404–408

    Article  CAS  Google Scholar 

  24. Yang J, Zhang Z, Xu X et al (2011) Superoleophobic textured aluminum surfaces. New J Chem 35:2422–2426

    Article  CAS  Google Scholar 

  25. Liu K, Jiang L (2011) Metallic surfaces with special wettability. Nanoscale 3:825–838

    Article  PubMed  CAS  ADS  Google Scholar 

  26. Liu K, Tian Y, Jiang L (2013) Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci 58:503–564

    Article  MathSciNet  CAS  Google Scholar 

  27. Ohkubo Y, Tsuji I, Onishi S et al (2010) Preparation and characterization of super-hydrophobic and oleophobic surface. J Mater Sci 45:4963. doi:10.1007/s10853-010-4362-2

    Article  CAS  ADS  Google Scholar 

  28. Nilsson MA, Daniello RJ, Rothstein JP (2010) A novel and inexpensive technique for creating superhydrophobic surfaces using Teflon and sandpaper. J Phys D 43:045301

    Article  ADS  Google Scholar 

  29. Vedder W, Vermilyea DA (1969) Aluminum + water reaction. Trans Faraday Soc 65:561–584

    Article  CAS  Google Scholar 

  30. Alwitt RS (1971) Some physical and dielectric properties of hydrous alumina films. J Electrochem Soc 118:1730–1733

    Article  CAS  Google Scholar 

  31. Stralin A, Hjertberg T (1993) Improved adhesion strength between aluminum and ethylene copolymers by hydration of the aluminum surface. J Appl Polym Sci 49:511–521

    Article  Google Scholar 

  32. Rider AN, Arnott DR (2000) Boiling water and silane pre-treatment of aluminum alloys for durable adhesive bonding. Int J Adhes Adhes 20:209–220

    Article  CAS  Google Scholar 

  33. Jafari R, Farzaneh M (2011) Fabrication of superhydrophobic nanostructured surface on aluminum alloy. Appl Phys A 102:195–199

    Article  CAS  ADS  Google Scholar 

  34. Yang Z, Wu Y-Z, Ye Y-F, Gong M-G, Xu X-L (2012) A simple way to fabricate an aluminum sheet with superhydrophobic and self-cleaning properties. Chinese Phys B 21:126801

    Article  ADS  Google Scholar 

  35. Hozumi A, Kim B, McCarthy TJ (2009) Hydrophobicity of perfluoroalkyl isocyanate monolayers on oxidized aluminum surfaces. Langmuir 25:6834–6840

    Article  PubMed  CAS  Google Scholar 

  36. McCarvill WT, Bell JP (1974) Effect of time and type of water pretreatment on the bond strength of epoxy-aluminum joints. J Appl Polym Sci 18:335–342

    Article  CAS  Google Scholar 

  37. Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid constitution. In: Anonymous contact angle, wettability, and adhesion, advances in chemistry, Washington, DC

  38. Nishino T, Meguro M, Nakamae K et al (1999) Lowest surface free energy based on -CF3 alignment. Langmuir 15:4321–4323

    Article  CAS  Google Scholar 

  39. Hoque E, Derose JA, Kulik G et al (2006) Alkylphosphonate modified aluminum oxide surfaces. J Phys Chem B 110:10855

    Article  PubMed  CAS  Google Scholar 

  40. Lakshmi RV, Bharathidasan T, Bera P et al (2012) Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating. Surf Coat Technol 206:3888–3894

    Article  CAS  Google Scholar 

  41. Tuteja A, Choi W, McKinley GH et al (2008) Design parameters for superhydrophobicity and superoleophobicity. MRS Bull 33:752–758

    Article  CAS  Google Scholar 

  42. Tuteja A, Choi W, Mabry JM et al (2008) Robust omniphobic surfaces. Proc Natl Acad Sci USA 105:18200

    Article  PubMed  CAS  PubMed Central  ADS  Google Scholar 

  43. Daniel I, Karl WK, Prantik M et al (2013) Superhydrophobic antireflection, and low haze glass surfaces using scalable dewetting nanostructuring. Nano Res 6:429–440

    Article  Google Scholar 

  44. Chhatre SS, Choi W, Tuteja A et al (2010) Scale dependence of omniphobic mesh surfaces. Langmuir 26:4027–4035

    Article  PubMed  CAS  Google Scholar 

  45. Ganesh VA, Dinachali SS, Nair AS et al (2013) Robust superamphiphobic film from electrospun TiO2 nanostructures. ACS Appl Mater Interfaces 5:1527–1532

    Article  PubMed  CAS  Google Scholar 

  46. Zhao H, Park K, Law K (2012) Effect of surface texturing on superoleophobicity, contact angle hysteresis, and “robustness”. Langmuir 28:14925–14934

    Article  PubMed  CAS  Google Scholar 

  47. Mishchenko L, Hatton B, Bahadur V et al (2010) Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4:7699–7707

    Article  PubMed  CAS  Google Scholar 

  48. Bahadur V, Garimella SV (2009) Preventing the Cassie–Wenzel transition using surfaces with noneommunicating roughness elements. Langmuir 25:4815–4820

    Article  PubMed  CAS  Google Scholar 

  49. Nosonovsky M, Bormashenko E (2009) In: Favret E, Fuentes N (eds) Functional properties of biological surfaces: characterization and technological applications. World Scientific Publishing, Singapore, p 43

  50. Bhushan B, Jung YC, Koch K (2009) Nano and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A 367:1631–1672

    Article  CAS  ADS  Google Scholar 

  51. Feng L, Zhang Y, Xi J et al (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  PubMed  CAS  Google Scholar 

  52. Bhushan B, Nosonovsky M (2010) The rose petal effect and the modes of superhydrophobicity. Philos Trans R Soc A 368:4713–4728

    Article  MathSciNet  CAS  MATH  ADS  Google Scholar 

  53. Shuai Y, Yuchen Q, Yaxu H et al (2013) Peanut leaf inspired multifunctional surfaces. Small. doi:10.1002/smll.201301029

Download references

Acknowledgements

The authors would like to thank the UALR Center for Integrative Nanotechnology Sciences staff for their valuable help during SEM measurements. The editorial assistance of Dr. Marinelle Ringer is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khedir R. Khedir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saifaldeen, Z.S., Khedir, K.R., Cansizoglu, M.F. et al. Superamphiphobic aluminum alloy surfaces with micro and nanoscale hierarchical roughness produced by a simple and environmentally friendly technique. J Mater Sci 49, 1839–1853 (2014). https://doi.org/10.1007/s10853-013-7872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7872-x

Keywords

Navigation