Skip to main content
Log in

Fabrication of photonic crystal heterostructures by a simple vertical deposition technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes a facile method for the fabrication of photonic crystal heterostructures (PCHSs) composed of photonic crystals (PCs) of core–shell spheres with different diameters and effective refractive indexes. The PCs are fabricated by a simple vertical deposition technique. The PCs of monodisperse polystyrene/silica core–shell (PS@SiO2) spheres or hollow silica spheres are used as substrates to fabricate PCHSs, respectively. The results indicate that the resultant PCHSs formed from PS@SiO2 spheres or hollow silica spheres have a very high quality and a good adsorbing interface between the PCs. Transmission spectra show that there are two optical stop bands of the PCHSs, and the positions of optical stop bands are controlled by tuning the size and the effective refractive index of spheres. The PCHSs formed from hollow silica spheres may facilitate the development of the potential applications due to the novel properties of hollow silica spheres, such as, low density, low refractive index, and high specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  PubMed  CAS  ADS  Google Scholar 

  2. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Painter O, Lee RK, Scherer A, Yariv A, O’Brien JD, Dapkus PD, Kim I (1999) Two-dimensional photonic band-gap defect mode laser. Science 284:1819–1821

    Article  PubMed  CAS  Google Scholar 

  4. Siwick BJ, Kalinina O, Kumacheva E, Miller RJD (2001) Polymeric nanostructured material for high-density three-dimensional optical memory storage. J Appl Phys 90:5328–5334

    Article  CAS  ADS  Google Scholar 

  5. Yanik MF, Fan SH, Soljacic M (2003) High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phys Lett 83:2739–2741

    Article  CAS  ADS  Google Scholar 

  6. Guo C, Zhou C, Sai N, Ning BA, Liu M, Chen H, Gao Z (2012) Detection of bisphenol A using an opal photonic crystal sensor. Sens Actuators B 166–167:17–23

    Article  Google Scholar 

  7. Toader O, John S, Busch K (2001) Optical trapping, field enhancement and laser cooling in photonic crystals. Opt Express 8:217–222

    Article  PubMed  CAS  ADS  Google Scholar 

  8. Park SH, Xia Y (1999) Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir 15:266–273

    Article  CAS  Google Scholar 

  9. Li Y, Wang C, Zhang N, Wang C, Xing Q (2006) Analysis and design of terahertz photonic crystal fibers by an effective-index method. Appl Opt 45:8462–8465

    Article  PubMed  ADS  Google Scholar 

  10. Bardosova M, Pemble ME, Povey IM, Tredgold RH, Whitehead DE (2006) Enhanced Bragg reflections from size-matched heterostructure photonic crystal thin films prepared by the Langmuir–Blodgett method. Appl Phys Lett 89:093116

    Article  ADS  Google Scholar 

  11. Masse P, Ravaine S (2005) Engineered multilayer colloidal crystals with tunable optical properties. Chem Mater 17:4244–4249

    Article  CAS  Google Scholar 

  12. Wong S, Kitaev V, Ozin GA (2003) Colloidal crystal films: advances in universality and perfection. J Am Chem Soc 125:15589–15598

    Article  PubMed  CAS  Google Scholar 

  13. Nair RV, Vijaya R (2007) Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band. J Appl Phys 102:056102

    Article  ADS  Google Scholar 

  14. Yan Q, Teh LK, Shao Q, Wong CC, Chiang YM (2008) Layer transfer approach to opaline hetero photonic crystals. Langmuir 24:1796–1800

    Article  PubMed  CAS  Google Scholar 

  15. Wang AJ, Chen SL, Dong P (2011) Fabrication of colloidal crystal heterostructures by a room temperature floating self-assembly method. Mater Chem Phys 128:6–9

    Article  CAS  Google Scholar 

  16. Egen M, Voss R, Griesebock B, Zentel R (2003) Heterostructures of polymer photonic crystal films. Chem Mater 15:3786–3792

    Article  CAS  Google Scholar 

  17. Jiang QS, Li C, Shi S, Zhao D, Xiong L, Wei HL, Yi L (2012) Assembling ultra-thick and crack-free colloidal crystals via an isothermal heating evaporation induced self-assembly method. J Non Cryst Solids 358:1611–1616

    Article  CAS  ADS  Google Scholar 

  18. Jiang QS, Zhong J, Hu X, Song F, Ren K, Wei HL, Yi L (2012) Fabrication and optical properties of silica shell photonic crystals. Colloids Surf A 415:202–208

    Article  CAS  Google Scholar 

  19. Jiang QS, Li K, Wei HL, Yi L (2013) Tunable optical stop band of silica shell photonic crystals. J Sol Gel Sci Technol 67:565–572

    Article  CAS  Google Scholar 

  20. Chiappini A, Armellini C, Chiasera A, Ferrari M, Jestin Y, Mattarelli M, Montagna M, Moser E, Conti GN, Pelli S, Righini GC, Goncalves MC, Almeida RM (2007) Design of photonic structures by sol–gel-derived silica nanospheres. J Non Cryst Solids 353:674–678

    Article  CAS  ADS  Google Scholar 

  21. Deng TS, Zhang JY, Zhu KT, Zhang QF, Wu JL (2011) Temperature-modified photonic bandgap in colloidal photonic crystals fabricated by vinyl functionalized silica spheres. Mater Chem Phys 129:540–546

    Article  CAS  Google Scholar 

  22. Zhang J, Liu H, Wang ZL, Ming NB (2008) Assembly of high-quality colloidal crystals under negative pressure. J Appl Phys 103:013517

    Article  ADS  Google Scholar 

  23. Gu ZZ, Fujishima A, Sato O (2002) Fabrication of high-quality opal films with controllable thickness. Chem Mater 14:760–765

    Article  CAS  Google Scholar 

  24. Deng TS, Marlow F (2012) Synthesis of monodisperse polystyrene@vinyl–SiO2 core–shell particles and hollow SiO2 spheres. Chem Mater 24:536–542

    Article  CAS  Google Scholar 

  25. Han MG, Shin CG, Jeon SJ, Shim HS, Heo CJ, Jin H, Kim JW, Lee SY (2012) Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band. Adv Mater 24:6438–6444

    Article  PubMed  CAS  Google Scholar 

  26. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143–149

    Article  CAS  ADS  Google Scholar 

  27. Kanai T, Sawada T, Toyotama A, Yamanaka J, Kitamura K (2007) Tuning the effective width of the optical stop band in colloidal photonic crystals. Langmuir 23:3503–3505

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Analytical and Testing Center of Huazhong University of Science & Technology for all samples testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helin Wei or Lin Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q., Gao, J., Wei, H. et al. Fabrication of photonic crystal heterostructures by a simple vertical deposition technique. J Mater Sci 49, 1832–1838 (2014). https://doi.org/10.1007/s10853-013-7871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7871-y

Keywords