Skip to main content
Log in

Dynamics of dysprosium silicide nanostructures on Si(001) and (111) surfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The growth and coarsening dynamics of dysprosium silicide nanostructures are observed in real-time using photoelectron emission microscopy. The annealing of a thin Dy film to temperatures in the range of 700–1050 °C results in the formation of epitaxial rectangular silicide islands and nanowires on Si(001) and triangular and hexagonal silicide islands on Si(111). During continuous annealing, individual islands are observed to coarsen via Ostwald ripening at different rates as a consequence of local variations in the size and relative location of the surrounding islands on the surface. A subsequent deposition of Dy onto the Si(001) surface at 1050 °C leads to the growth of the preexisting islands and to the formation of silicide nanowires at temperatures above where nanowire growth typically occurs. Immediately after the deposition is terminated, the nanowires begin to decay from the ends, apparently transferring atoms to the more stable rectangular islands. On Si(111), a low continuous flux of Dy at 1050 °C leads to the growth of kinked and jagged island structures, which ultimately form into nearly equilateral triangular shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baglin JEJ, d’Heurle FM, Petersson CS (1980) The formation of silicides from thin films of some rare-earth metals. Appl Phys Lett 36:594–596

    Article  CAS  ADS  Google Scholar 

  2. Koleshko VM, Belitsky VF, Khodin AA (1986) Thin-films of rare-earth-metal silicides in microelectronics. Vacuum 36:669–676

    Article  CAS  Google Scholar 

  3. Tu KN, Thompson RD, Tsaur BY (1981) Low Schottky-barrier of rare-earth silicide on n-Si. Appl Phys Lett 38:626–628

    Article  CAS  ADS  Google Scholar 

  4. Norde H, deSousa Pires J, d’Heurle F, Pesavento F, Petersson S, Tove PA (1981) The Schottky-barrier height of the contacts between some rare-earth-metals (and silicides) and p-type silicon. Appl Phys Lett 38:865–867

    Article  CAS  ADS  Google Scholar 

  5. Chou Y-C, Lu K-C, Tu KN (2010) Nucleation and growth of epitaxial silicide in silicon nanowires. Mater Sci Eng R 70:112–125

    Article  Google Scholar 

  6. Nogami J, Liu BZ, Katkov MV, Ohbuchi C, Birge NO (2001) Self-assembled rare-earth silicide nanowires on Si(001). Phys Rev B 63:233305

    Article  ADS  Google Scholar 

  7. Knapp JA, Picraux ST (1986) Epitaxial-growth of rare-earth silicides on (111) Si. Appl Phys Lett 48:466–468

    Article  CAS  ADS  Google Scholar 

  8. Luo CH, Shen GH, Chen LJ (1997) Vacancy ordering structures in epitaxial RESi2-x thin films on (111)Si and (001)Si. Appl Surf Sci 113(114):457–461

    Article  ADS  Google Scholar 

  9. Netzer FP (1995) Rare-earth overlayers on silicon. J Phys 7:991–1022

    CAS  Google Scholar 

  10. Preinesberger C, Vandre S, Kalka T, Dahne-Prietsch M (1998) Formation of dysprosium silicide wires on Si(001). J Phys D 31:L43–L45

    Article  CAS  ADS  Google Scholar 

  11. Chen Y, Ohlberg DAA, Williams RS (2002) Nanowires of four epitaxial hexagonal silicides grown on Si(001). J Appl Phys 91:3213–3218

    Article  CAS  ADS  Google Scholar 

  12. Cui Y, Chung J, Nogami J (2012) Controlling the width of self-assembled dysprosium silicide nanowires on the Si(001) surface. J Phys 24:045003

    CAS  Google Scholar 

  13. Qui D, Zhang MX, Kelly PM (2009) Crystallography of self-assembled DySi2 nanowires on a Si substrate. Appl Phys Lett 94:083105

    Article  ADS  Google Scholar 

  14. Eames C, Reakes M, Tear SP, Noakes CQ, Bailey P (2010) Phase selection in the rare earth silicides. Phys Rev B 82:174112

    Article  ADS  Google Scholar 

  15. Shinde A, Wu R, Ragan R (2010) Thermodynamic driving forces governing assembly of disilicide nanowires. Surf Sci 604:1481–1486

    Article  CAS  ADS  Google Scholar 

  16. Chen Y, Ohlberg DAA, Medeiros-Ribeiro G, Chang YA, Williams RS (2002) Growth and evolution of epitaxial erbium disilicide nanowires on Si (001). Appl Phys A 75:353–361

    Article  CAS  ADS  Google Scholar 

  17. Lee YK, Fujimura N, Ito T, Itoh N (1993) Epitaxial growth and structural characterization of erbium silicide formed on (100) Si through a solid phase reaction. J Cryst Growth 134:247–254

    Article  CAS  ADS  Google Scholar 

  18. Liu BZ, Nogami J (2003) An STM study of dysprosium silicide nanowires on Si(001). J Appl Phys 93:593–599

    Article  CAS  ADS  Google Scholar 

  19. Liu BZ, Nogami J (2003) Growth of parallel rare earth silicide nanowire arrays on vicinal Si(001). Nanotechnology 14:873–877

    Article  CAS  ADS  Google Scholar 

  20. He Z, Smith DJ, Bennett PA (2004) Faulted surface layers in dysprosium silicide nanowires. Phys Rev B 70:241402–241405

    Article  ADS  Google Scholar 

  21. Chen Y, Ohlberg DAA, Medeiros-Ribeiro G, Chang YA, Williams RS (2000) Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001). Appl Phys Lett 76:4004–4006

    Article  CAS  ADS  Google Scholar 

  22. Ade H, Yang W, English SL, Hartman J, Davis RF, Nemanich RJ, Litvinenko VN, Pinayev IV, Wu Y, Madey JMJ (1998) A free electron laser–photoemission electron microscope system (FEL–PEEM). Surf Rev Lett 5:1257–1268

    Article  CAS  Google Scholar 

  23. Nikolic MV, Radic SM, Minic V, Ristic MM (1996) The dependence of the work function of rare earth metals on their electron structure. Microelectron J 27:93–96

    Article  CAS  Google Scholar 

  24. Allen FG, Gobeli GW (1962) Work function, photoelectric threshold, and surface states of atomically clean silicon. Phys Rev 127:150–158

    Article  CAS  ADS  Google Scholar 

  25. Zinke-Allmang M, Feldman LC, Grabow MH (1992) Clustering on surfaces. Surf Sci Rep 16:377–463

    Article  CAS  ADS  Google Scholar 

  26. Zinke-Allmang M (1999) Phase separation on solid surfaces: nucleation, coarsening and coalescence kinetics. Thin Solid Films 346:1–68

    Article  CAS  ADS  Google Scholar 

  27. Shinde A, Cao J, Lee S, Wu R, Ragan R (2008) An atomistic view of structural and electronic properties of rare earth ensembles on Si(001) substrates. Chem Phys Lett 466:159–164

    Article  CAS  ADS  Google Scholar 

  28. Lee S, Shinde A, Ragan R (2009) Morphological work function dependence of rare-earth disilicide metal nanostructures. Nanotechnology 20:035701

    Article  PubMed  Google Scholar 

  29. Yoshikawa T, Morita K, Kawanishi S, Tanaka T (2010) Thermodynamics of impurity elements in solid silicon. J Alloys Compd 490:31–41

    Article  CAS  Google Scholar 

  30. Ren FYG, Michel J, Sun-Paduano Q, Zheng B, Kitagawa H, Jacobson DC, Poate JM, Kimerling LC (1993) Ic compatible processing of Si: Er for optoelectronics. Mater Res Soc Symp Proc 298:415–423

    Article  CAS  Google Scholar 

  31. Tang YS (1991) Enhanced 1.54 μm emission of erbium implanted silicon. Phys Lett A 155:219–221

    Article  CAS  ADS  Google Scholar 

  32. Travlos A, Salamouras N, Boukos N (2003) Growth of rare earth silicides on silicon. J Phys Chem Solids 64:87–93

    Article  CAS  ADS  Google Scholar 

  33. Ye G, Nogami J (2006) Dysprosium disilicide nanostructures on Si(001) studied by scanning tunneling microscopy and transmission electron microscopy. Thin Solid Films 497:48–52

    Article  CAS  ADS  Google Scholar 

  34. Ye G, Crimp MA, Nogami J (2006) Crystallographic study of self-assembled dysprosium silicide nanostructures on Si(001). Phys Rev B 74:033104

    Article  ADS  Google Scholar 

  35. Ye G, Crimp MA, Nogami J (2009) Self-assembled Gd silicide nanostructures grown on Si(001). J Appl Phys 105:104304

    Article  ADS  Google Scholar 

  36. Yang J, Cai Q, Wang X-D, Koch R (2004) Morphological evolution of erbium disilicide nanowires on Si(001). Surf Interface Anal 36:104–108

    Article  CAS  Google Scholar 

  37. Travlos A, Salamouras N, Boukos N (2001) Epitaxial dysprosium silicide films on silicon: growth, structure and electrical properties. Thin Solid Films 397:138–142

    Article  CAS  ADS  Google Scholar 

  38. Tu K, Mayer JW, Feldman LC (1992) Electronic thin film science. Macmillan, New York

    Google Scholar 

  39. Jesson DE, Chen G, Chen KM, Pennycook SJ (1998) Self-limiting growth of strained faceted islands. Phys Rev Lett 80:5156–5159

    Article  CAS  ADS  Google Scholar 

  40. Fitting L, Ware ME, Haywood JR, Walter JH, Nemanich RJ (2005) Self-organized nanoscale Ge dots and dashes on SiGe/Si superlattices. J Appl Phys 98:024317

    Article  ADS  Google Scholar 

  41. Kastner M, Voigtlander B (1999) Kinetically self-limiting growth of ge islands on Si(001). Phys Rev Lett 82:2745–2748

    Article  CAS  ADS  Google Scholar 

  42. Bartelt NC, Theis W, Tromp RM (1996) Ostwald ripening of two-dimensional islands on Si(001). Phys Rev B 54:11741–11751

    Article  CAS  ADS  Google Scholar 

  43. Muller P, Kern R (2000) Equilibrium nano-shape changes induced by epitaxial stress (generalised Wulf–Kaishew theorem). Surf Sci 457:229–253

    Article  CAS  ADS  Google Scholar 

  44. Goldfarb I, Cohen-Taguri G, Grossman S, Levinshtein M (2005) Equilibrium shape of titanium silicide nanocrystals on Si(111). Phys Rev B 72:075430

    Article  ADS  Google Scholar 

  45. Yang W-C, Ade H, Nemanich RJ (2004) Shape stability of TiSi2 islands on Si (111). J Appl Phys 95:1572–1576

    Article  CAS  ADS  Google Scholar 

  46. Porter DA, Easterling KE (1992) Phase transformations in metals alloys, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  47. McLean JG, Krishnamachari B, Peale DR, Chason E, Sethna JP, Cooper BH (1997) Decay of isolated surface features driven by the Gibbs–Thomson effect in an analytic model and a simulation. Phys Rev B 55:1811–1823

    Article  CAS  ADS  Google Scholar 

  48. Kodambaka S, Petrova V, Khare SV, Gall D, Rockett A, Petrov I, Greene JE (2002) Size-dependent detachment-limited decay kinetics of two-dimensional TiN islands on TiN(111). Phys Rev Lett 89:176102

    Article  PubMed  CAS  ADS  Google Scholar 

  49. Vandre S, Kalka T, Preinesberger C, Dahne-Prietsch M (1999) Epitaxial growth and electronic structure of lanthanide silicides on n-type Si(111). J Vac Sci Technol B 17:1682–1690

    Article  CAS  Google Scholar 

  50. He Z, Smith DJ, Bennett PA (2005) Epitaxial DySi2 nanowire formation on stepped Si(111). Appl Phys Lett 86:143110

    Article  ADS  Google Scholar 

  51. Arnaud d’Avitaya F, Perio A, Oberlin J-C, Campidelli Y, Chroboczek JA (1989) Fabrication and structure of epitaxial Er silicide films on (111) Si. Appl Phys Lett 54:2198–2200

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF under Grants DMR-0512591 and DMR-0805353 and the AFOSR through the MFEL program. Partial funding for AS-M was provided by U.S. Nuclear Regulatory Commission (Award Number NRC-27-10-1117). We acknowledge the Duke Free Electron Laser Laboratory for access to the OK-4 UV free electron laser. The experimental measurements were completed while AS-M, MCZ, and RJN were at North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sunda-Meya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeman, M.C., Nemanich, R.J. & Sunda-Meya, A. Dynamics of dysprosium silicide nanostructures on Si(001) and (111) surfaces. J Mater Sci 49, 1812–1823 (2014). https://doi.org/10.1007/s10853-013-7869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7869-5

Keywords

Navigation