Journal of Materials Science

, Volume 49, Issue 4, pp 1805–1811 | Cite as

Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix

  • Melissa InfusinoEmail author
  • Antonio De Luca
  • Federica Ciuchi
  • Andrei Ionescu
  • Nicola Scaramuzza
  • Giuseppe Strangi


We report on the effect of gold nanoparticle (Au NP) dispersion in a chiral nematic liquid crystal (LC). Polarized optical microscopy and X-ray diffraction measurements evidence the insurgence of an order change in the LC host. Moreover, a comparative analysis based on dielectric and voltammetric spectroscopies performed on pure LC and on Au NP-doped LC shows that Au NP’s presence besides affecting LC order influences its electric properties: ion conductivity results importantly reduced, and beyond a threshold value of the applied field electrophoresis phenomena are induced.


Liquid Crystal Liquid Crystal Cell Selective Reflection Chiral Liquid Crystal Chiral Nematic Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has received funding from the European Unions Seventh Framework Programme ([FP7/2008]) Metachem Project under Grant agreement No [228762].


  1. 1.
    de Gennes PG (1995) The physics of liquid crystals. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Pratibha R, Park W, Smalyukh II (2010) Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films. J Appl Phys 107:063511 (5pp)CrossRefADSGoogle Scholar
  3. 3.
    Mitov M, Portet C, Bourgerette C, Snoeck E, Verelst M (2002) Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal. Nat Mater 1:229–231PubMedCrossRefADSGoogle Scholar
  4. 4.
    Musevic I, Skarabot M, Tkalec U, Ravnic M, Zumer S (2006) Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313:954–958PubMedCrossRefADSGoogle Scholar
  5. 5.
    Bitar R, Agez G, Mitov M (2011) Cholesteric liquid crystal self-organization of gold nanoparticles. Soft Matter 7:8198–8206CrossRefADSGoogle Scholar
  6. 6.
    Liu Q, Senyuk B, Tang J, Lee T, Qian J, He S, Smalyukh II (2012) Plasmonic complex fluids of nematiclike and helicoidal liquid crystal self-assemblies of gold nanorods. Phys Rev Lett 109:088301PubMedCrossRefADSGoogle Scholar
  7. 7.
    Hayeb H, Grand J, Sellame H, Truong S, Aubard J, Felidj N, Mlayah A, Lacaze E (2012) Gold nanoparticles in a cholesteric liquid crystal matrix: self-organization and localized surface plasmon properties. J Mater Chem 22:7856–7862CrossRefGoogle Scholar
  8. 8.
    Coursault D, Grand J, Zappone B, Ayeb H, Lvi G, Flidj N, Lacaze E (2012) Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater 24:1461–1465PubMedCrossRefGoogle Scholar
  9. 9.
    Milette J, Cowling SJ, Toader V, Lavigne C, Saez IM, Lennox RB, Goodby JW, Reven L (2012) Reversible long range network formation in gold nanoparticle-nematic liquid crystal composites. Soft Matter 8:173–179CrossRefADSGoogle Scholar
  10. 10.
    Milette J, Relaix S, Lavigne C, Lennox RB, Goodby JW, Reven L (2012) Reversible long range patterning of gold nanoparticles by smectic liquid crystal. Soft Matter 8:6593–6598CrossRefGoogle Scholar
  11. 11.
    Koenig GM, Gettelfinger BT Jr., de Pablo JJ, Abbott NL (2008) Using localized surface plasmon resonances to probe the nanoscopic origins of adsorbate-driven ordering transitions of liquid crystals in contact with chemically functionalized gold nanodots. Nano Lett 8:2362–2368PubMedCrossRefADSGoogle Scholar
  12. 12.
    Park SY, Stroud D (2005) Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle. Phys Rev Lett 94:217401 (4pp)PubMedCrossRefADSGoogle Scholar
  13. 13.
    Khoo IC, Werner DH, Liang X, Diaz A, Weiner B (2006) Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. Opt Lett 31:2592–2594PubMedCrossRefADSGoogle Scholar
  14. 14.
    Kubo S, Diaz A, Tang Y, Mayer TS, Khoo IC, Mallouk TE (2007) Tunability of the refractive index of gold nanoparticle dispersion. Nano Lett 7:3418–3423PubMedCrossRefADSGoogle Scholar
  15. 15.
    Liu Q, Cui Y, Gardner D, Li X, He S, Smalyukh II (2010) Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterials. Nano Lett 10:1347–1353PubMedCrossRefADSGoogle Scholar
  16. 16.
    Kaczmarek M, Buchnev O, Nandhakumar I (2008) Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optical response. Appl Phys Lett 92:103307–103309CrossRefADSGoogle Scholar
  17. 17.
    Qi H, Hegman T (2008) Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem 18:3288–3294CrossRefGoogle Scholar
  18. 18.
    Khatua S, Manna P, Chang W-S, Tcherniak A, Friendlander E, Zubarev ER, Link S (2010) Plasmonic nanoparticles–liquid crystal composites. J Phys Chem 114:7251–7257Google Scholar
  19. 19.
    Kurochkin O, Buchnev O, Iljin A, Park SK, Kwon SB, Grabar O, Reznikov Y (2009) A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J Opt A 11:024003CrossRefADSGoogle Scholar
  20. 20.
    Stark H (2001) Physics of colloidal dispersions in nematic liquid crystals. Phys Rep 351:387–474CrossRefADSGoogle Scholar
  21. 21.
    Gupta M, Satpathy I, Pratibha R (2010) Nanoparticle induced director distortion and disorder in liquid crystal-nanoparticle dispersions. J Colloid Interface Sci 352:292–298PubMedCrossRefGoogle Scholar
  22. 22.
    Qi H, Hegman T (2006) Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J Mater Chem 16:4197–4205CrossRefGoogle Scholar
  23. 23.
    Kumar S (2001) Liquid crystals. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Cluzeu P, Barois P, Nguyen HT (2002) X-ray scattering study of the electric-field-induced layer deformations of an antiferroelectric liquid crystal. Eur Phys J E 7:23–29CrossRefGoogle Scholar
  25. 25.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743CrossRefGoogle Scholar
  26. 26.
    Lavrentovichl OD, Klman M, Pergamenshchik VM (1994) Nucleation of focal conic domains in smectic A liquid crystals. J Phys II (Paris) 4:377–400Google Scholar
  27. 27.
    Trivedi RP, Klevets II, Senyuk B, Lee T, Smalyukh II (2012) Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamelllar soft media. PNAS 109:44744–4749ADSGoogle Scholar
  28. 28.
    Senyuk B, Evans JS, Ackerman PJ, Lee T, Manna P, Vigderman L, Zubarev ER, van de Lagemaat J, Smalyukh II (2012) Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystal. Nano Lett 12:955–963PubMedCrossRefADSGoogle Scholar
  29. 29.
    Yada M, Yamamoto J, Tokoyama H (2002) Spontaneous formation of regular defect arrays in water-in-cholesteric liquid crystal emulsions. Langmuir 18:7436–7440CrossRefGoogle Scholar
  30. 30.
    Ramos L, Zapotocky M, Lubensky LT, Weitz DA (2002) Rheology of defect network in cholesteric liquid crystals. Phys Rev E 66:031711CrossRefADSGoogle Scholar
  31. 31.
    Zapotocky M, Ramos L, Poulin P, Lubensky LT, Weitz DA (1999) Particle-stabilized defect gel in cholesteric liquid crystals. Science 283:209–112PubMedCrossRefGoogle Scholar
  32. 32.
    Hong SH, Verduzco R, Williams JC, Twieg RJ, DiMasi E, Pindak R, Jáklie A, Gleeson JT, Sprunt S (2010) Short-range smectic order in bent-core nematic liquid crystals. Soft Matter 6:4819–4827CrossRefADSGoogle Scholar
  33. 33.
    Wang F, Cao H, Li K, Song P, Wu X, Yang H (2012) Control homogeneous alignment of chiral nematic liquid crystal withsmectic-like short-range order by thermal treatment. Colloid Surf A 410:31–37CrossRefADSGoogle Scholar
  34. 34.
    Sawada A, Manabe A, Naemura S (2001) A comparative study on the attributes of ions in nematic and isotropic phases. Jpn J Appl Phys 40:220–224CrossRefADSGoogle Scholar
  35. 35.
    Bruno V, Cazzanelli E, Scaramuzza N, Strangi G, Ceccato R, Carturan G (2002) Electrical and electro-optical investiations of liquid crystal cells containing TiO2 − V2O5 thin films prepared by sol–gel synthesis. J Appl Phys 92:5340CrossRefADSGoogle Scholar
  36. 36.
    Cazzanelli E, abd Marino S, Bruno V, Castriota M, Scaramuzza N, Strangi G, Versace C, Ceccato R, Carturan G (2003) Characterizations of mixed Bi/V oxide films, deposited via solgel route, used as electrodes in asymmetric liquid crystal cells. Solid State Ions 165:201–208CrossRefGoogle Scholar
  37. 37.
    Alexe-Ionescu A, Ionescu AT, Barna ES, Scaramuzza N, Strangi G (2003) Role of surface order on the total electric conduction in NLC samples. J Phys Chem B 107:5487–5490CrossRefGoogle Scholar
  38. 38.
    Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers original research article. Polymer 8:161–210CrossRefGoogle Scholar
  39. 39.
    Wübbenhorst M, van Turnhout J (2002) Analysis of complex dielectric spectra.I. One-dimensional derivative techniques and three-dimensional modelling. J Non-Cryst Solids 305:40–49CrossRefGoogle Scholar
  40. 40.
    Tomylko S, Yaroshchuk O, Kovalchuk O, Maschke U, Yamaguchi R (2011) Dielectric and electro-optical properties of liquid crystals doped with diamond nanoparticles. Mol Cryst Liq Cryst 541:273–281Google Scholar
  41. 41.
    Tang C-Y, Huang S-M, Lee W (2011) Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles. J Phys D 44:355102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Melissa Infusino
    • 1
    Email author
  • Antonio De Luca
    • 1
  • Federica Ciuchi
    • 1
  • Andrei Ionescu
    • 2
  • Nicola Scaramuzza
    • 1
  • Giuseppe Strangi
    • 3
  1. 1.CNR-IPCF Licryl, c/o Department of PhysicsUniversity of CalabriaArcavacata di RendeItaly
  2. 2.Department of PhysicsUniversity of BucharestBucharestRomania
  3. 3.Department of PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations