Skip to main content
Log in

Brittle–ductile transition behavior of poly(ethylene terephthalate)/poly(ethylene-octene) blend: the roles of compatibility and test temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we attempted to elucidate the Brittle–ductile transition (BDT) behavior of poly(ethylene terephthalate) (PET)/poly(ethylene-octene) (POE) blends under different situations of interfacial compatibility and test temperature. To modulate the compatibility between PET and PEO, maleic anhydride grafted POE (mPOE) was selected as compatibilizer. Three kinds of elastomeric additives, 100 % POE, mPOE/POE (15/85 w/w), and 100 % mPOE, were blended with PET, resulting in three compatibility situations, namely, poor, moderate, and strong interfacial adhesion, respectively. The impact toughness as a function of elastomer content was measured under different interfacial adhesions and test temperature, and microscopic morphology was revealed by scanning electron microscopy and transmission electron microscopy. The results indicated that the interfacial adhesion determines the fashion of microvoiding and even the matrix shear yielding deformation, which will significantly affect the BDT behavior and its response to test temperature. Our study provides not only an effective route to prepare supertoughened PET blends (improved for 20 folds as comparing to the neat PET), but also a fresh insight into the importance of interfacial adhesion on the toughening of thermoplastic/elastomer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Grein C, Gahleitner M (2008) On the influence of nucleation on the toughness of iPP/EPR blends with different rubber molecular architectures. Express Polym Lett 2:392–397. doi:10.3144/expresspolymlett.2008.47

    Article  CAS  Google Scholar 

  2. Fu Q, Bai H, Xiu H, Huang C, Xu C, Li X (2013) Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(l-lactide)/poly(ether)urethane blends. Express Polym Lett 7:261–271. doi:10.3144/expresspolymlett.2013.24

    Article  Google Scholar 

  3. Loyens W, Groeninckx G (2003) Rubber toughened semicrystalline PET: influence of the matrix properties and test temperature. Polymer 44:123–136. doi:10.1016/S0032-3861(02)00743-7

    Article  CAS  Google Scholar 

  4. Weidisch R, Stamm M, Schubert D, Arnold M, Budde H, Höring S (1999) Correlation between phase behavior and tensile properties of diblock copolymers. Macromolecules 32:3405–3411. doi:10.1021/ma981748t

    Article  CAS  ADS  Google Scholar 

  5. Miguez Suarez JC, Biasi RS (2003) Effect of gamma irradiation on the ductile-to-brittle transition in ultra-high molecular weight polyethylene. Polym Degrad Stab 82:221–227. doi:10.1016/S0141-3910(03)00212-X

    Article  Google Scholar 

  6. Liu Z, Kwok K, Li R, Choy C (2002) Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites. Polymer 43:2501–2506. doi:10.1016/S0032-3861(02)00048-4

    Article  CAS  Google Scholar 

  7. Kayano Y, Keskkula H, Paul D (1998) Fracture behaviour of some rubber-toughened nylon 6 blends. Polymer 39:2835–2845. doi:10.1016/S0032-3861(97)00600-9

    Article  CAS  Google Scholar 

  8. Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77:409–417. doi:10.1002/(SICI)1097-4628(20000711)77:2

    Article  CAS  Google Scholar 

  9. Galeski A, Bartczak Z (2003) Cavitation and cavity-free deformation of filled crystalline polymer systems. Macromol Symp 194:47–62. doi:10.1002/masy.200390105

    Article  CAS  Google Scholar 

  10. Deblieck RAC, van Beek DJM, Remerie K, Ward IM (2011) Failure mechanisms in polyolefines: the role of crazing, shear yielding and the entanglement network. Polymer 52:2979–2990. doi:10.1016/j.polymer.2011.03.055

    Article  CAS  Google Scholar 

  11. Dompas D, Groeninckx G, Isogawa M, Hasegawa T, Kadokura M (1995) Cavitation versus debonding during deformation of rubber-modified poly(vinyl chloride). Polymer 36:437–441. doi:10.1016/0032-3861(95)91338-8

    Article  CAS  Google Scholar 

  12. Wu J, Mai YW, Yee AF (1994) Fracture toughness and fracture mechanisms of polybutylene-terephthalate/polycarbonate/impact-modifier blends. J Mater Sci 29:4510–4522. doi:10.1007/BF00376274

    Article  CAS  ADS  Google Scholar 

  13. Cho K, Yang J, Park CE (1997) The effect of interfacial adhesion on toughening behavior of rubber modified poly(methyl methacrylate). Polymer 38:5161–5167. doi:10.1016/S0032-3861(97)00052-9

    Article  CAS  Google Scholar 

  14. Liu Z, Zhu X, Wu L, Li Y, Qi Z, Choy C, Wang F (2001) Effects of interfacial adhesion on the rubber toughening of poly(vinyl chloride) Part 1. Impact tests. Polymer 42:737–746. doi:10.1016/S0032-3861(00)00375-X

    Article  CAS  Google Scholar 

  15. Yee A, Li D, Li X (1993) The importance of constraint relief caused by rubber cavitation in the toughening of epoxy. J Mater Sci 28:6392–6398. doi:10.1007/BF01352202

    Article  CAS  ADS  Google Scholar 

  16. Penco M, Pastorino M, Occhiello E, Garbassi F, Braglia R, Giannotta G (1995) High-impact poly(ethylene terephthalate) blends. J Appl Polym Sci 57:329–334. doi:10.1002/app.1995.070570309

    Article  CAS  Google Scholar 

  17. Cecere A, Greco R, Ragosta G, Scarinzi G, Taglialatela A (1990) Rubber toughened polybutylene terephthalate: influence of processing on morphology and impact properties. Polymer 31:1239–1244. doi:org/10.1016/0032-3861(90)90214-J

    Article  CAS  Google Scholar 

  18. Kanai H, Sullivan V, Auerbach A (1994) Impact modification of engineering thermoplastics. J Appl Polym Sci 53:527–541. doi:10.1002/app.1994.070530507

    Article  CAS  Google Scholar 

  19. Loyens W, Groeninckx G (2002) Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature. Polymer 43:5679–5691. doi:10.1016/S0032-3861(02)00472-X

    Article  CAS  Google Scholar 

  20. Hert M (1992) Tough thermoplastic polyesters by reactive extrusion with epoxy-containing copolymers. Makromol Mater Eng 196:89–99. doi:10.1002/apmc.1992.051960107

    CAS  Google Scholar 

  21. Akkapeddi M, Van Buskirk B, Mason C, Chung S, Swamikannu X (1995) Performance blends based on recycled polymers. Polym Eng Sci 35:72–78. doi:10.1002/pen.760350110

    Article  CAS  Google Scholar 

  22. Hale W, Pessan L, Keskkula H, Paul D (1999) Effect of compatibilization and ABS type on properties of PBT/ABS blends. Polymer 40:4237–4250. doi:10.1016/S0032-3861(98)00670-3

    Article  CAS  Google Scholar 

  23. Hale W, Keskkula H, Paul D (1999) Compatibilization of PBT/ABS blends by methyl methacrylate-glycidyl methacrylate-ethyl acrylate terpolymers. Polymer 40:365–377. doi:10.1016/S0032-3861(98)00189-X

    Article  CAS  Google Scholar 

  24. Takaki A, Yasui H, Narisawa I (1997) Fracture and impact strength of poly(vinyl chloride)/methyl methacrylate/butadiene/styrene polymer blends. Polym Eng Sci 37:105–119. doi:10.1002/pen.11651

    Article  CAS  Google Scholar 

  25. Dompas D, Groeninckx G, Isogawa M, Hasegawa T, Kadokura M (1994) Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 2. Rubber cavitation behaviour in poly(vinyl chloride)/methyl methacrylate-butadiene-styrene graft copolymer blends. Polymer 35:4750–4759. doi:10.1016/0032-3861(94)90728-5

    Article  CAS  Google Scholar 

  26. Su JJ, Peng F, Gao X, Yang GH, Fu Q, Wang K (2014) Superior toughness obtained via tuning the compatibility of poly(ethylene terephthalate)/poly(ethylene-octene) blends. Mater Des 53:673–680. doi:10.1016/j.matdes.2013.07.066

    Article  Google Scholar 

  27. Oshinski A, Keskkula H, Paul D (1992) Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6. Polymer 33:268–283. doi:10.1016/0032-3861(92)90984-5

    Article  CAS  Google Scholar 

  28. Oshinski A, Keskkula H, Paul D (1996) The role of matrix molecular weight in rubber toughened nylon 6 blends: 1. Morphology. Polymer 37:4891–4907. doi:10.1016/0032-3861(96)00373-4

    Article  CAS  Google Scholar 

  29. Huang J, Keskkula H, Paul D (2006) Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers. Polymer 47:639–651. doi:org/10.1016/j.polymer.2005.11.088

    Article  CAS  Google Scholar 

  30. Dompas D, Groeninckx G (1994) Toughening behaviour of rubber-modified thermoplastic polymers involving very small particles: 1. A criterion for internal rubber cavitation. Polymer 35:4743–4749. doi:10.1016/0032-3861(94)90727-7

    Article  CAS  Google Scholar 

  31. Wu S (1990) Chain structure, phase morphology, and toughness relationships in polymers and blends. Polym Eng Sci 30:753–761. doi:10.1002/pen.760301302

    Article  CAS  Google Scholar 

  32. Cho K, Yang J, Park CE (1998) The effect of rubber particle size on toughening behaviour of rubber-modified poly(methyl methacrylate) with different test methods. Polymer 39:3073–3081. doi:org/10.1016/S0032-3861(97)10036-2

    Article  CAS  Google Scholar 

  33. Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q (2012) Tailoring impact toughness of poly(l-lactide)/poly(ε-caprolactone)(PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl Mater Interfaces 4:897–905. doi:10.1021/am201564f

    Article  PubMed  CAS  Google Scholar 

  34. Jafari S, Gupta A (2000) Impact strength and dynamic mechanical properties correlation in elastomer-modified polypropylene. J Appl Polym Sci 78:962–971. doi:10.1002/1097-4628(20001031)78:5

    Article  CAS  Google Scholar 

  35. Borggreve R, Gaymans R, Schuijer J, Housz J (1987) Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size. Polymer 28:1489–1496. doi:10.1016/0032-3861(87)90348-X

    Article  CAS  Google Scholar 

  36. Liu Z, Zhang X, Zhu X, Li R, Qi Z, Wang F, Choy C (1998) Effect of morphology on the brittle ductile transition of polymer blends: 2. Analysis on poly(vinyl chloride)/nitrile rubber blends. Polymer 39:5019–5025. doi:10.1016/S0032-3861(98)00090-1

    Article  CAS  Google Scholar 

  37. Jiang W, Yu D, Jiang B (2004) Brittle–ductile transition of particle toughened polymers: influence of the matrix properties. Polymer 45:6427–6430. doi:10.1016/j.polymer.2004.07.023

    Article  CAS  Google Scholar 

  38. Bagher RI, Pearson RA (2000) Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance. Polymer 41:269–276. doi:10.1016/S0032-3861(99)00126-3

    Article  Google Scholar 

  39. Jiang W, Yuan Q, An L, Jiang B (2002) Effect of cavitations on brittle–ductile transition of particle toughened thermoplastics. Polymer 43:1555–1558. doi:10.1016/S0032-3861(01)00676-0

    Article  CAS  Google Scholar 

  40. Jiang W, Tjong S, Li R (2000) Brittle–tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed. Polymer 41:3479–3482. doi:10.1016/S0032-3861(99)00747-8

    Article  CAS  Google Scholar 

  41. Liu Z, Zhang X, Zhu X, Qi Z, Wang F, Li R, Choy C (1998) Effect of morphology on the brittle ductile transition of polymer blends: 6. Influence of rubber particle spatial distribution on the toughening and stiffening efficiency of poly(vinyl chloride)/nitrile rubber blends. Polymer 39:5047–5052. doi:10.1016/S0032-3861(98)00017-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from NSFC (21074075), the Ministry of Education of China (NCET-11-0348) and Sichuan University (2011SCU04A12) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Jj., Li, Yh., Wang, K. et al. Brittle–ductile transition behavior of poly(ethylene terephthalate)/poly(ethylene-octene) blend: the roles of compatibility and test temperature. J Mater Sci 49, 1794–1804 (2014). https://doi.org/10.1007/s10853-013-7867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7867-7

Keywords

Navigation