Skip to main content
Log in

Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The preparation of graphene oxide (GO) sheets with specified size was developed by simply controlling the time of ultrasonication to the large-size GO (LGO) sheets. The LGO sheets were synthesized by choosing large parent graphite, mild oxidation condition and a two-step centrifugation. The different-sized GO samples prepared under different ultrasonication times, are characterized by Scanning electron microscopy, X-ray photoelectron spectroscopy, Ultraviolet–visible spectroscopy, and X-ray diffraction. It is found that the size of the GO sheets, which has a Gaussian distribution, decreases from 231 to 17 μm2 as the ultrasonication time increases. Moreover, the ultrasonication not only can exfoliate and break GO sheets, but also increase the oxidation degree of GO sheets, especially when the GO sheets have a weak oxidation degree. It is reasonable to believe that the size of GO sheets is closely correlated to the C–O content, which enables the size of GO sheets to be controlled. Our work demonstrates that ultrasonication is an important method to control the size and the oxidation degree of GO sheets, to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Zhao J, Pei S, Cheng HM et al (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4:5245–5252

    Article  PubMed  CAS  Google Scholar 

  3. Chang H, Wang G, Zheng ZJ et al (2010) Transparent, flexible, low-temperature and solution processible graphene composite electrode. Adv Funct Mater 20:2893–2902

    Article  CAS  Google Scholar 

  4. Chitara B, Rao CNR et al (2011) Infrared photo-detectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 23:5419–5424

    Article  PubMed  CAS  Google Scholar 

  5. Agarwal S, Zhou X, Chen P et al (2010) Interfacing live cells with nanocarbon substrates. Langmuir 26:2244–2247

    Article  PubMed  CAS  Google Scholar 

  6. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl Phys Lett 94:203103 (1–3)

    ADS  Google Scholar 

  8. Ghosh S, Bao WZ, Balandin AA et al (2010) Dimensional crossover of thermal transport in few-layer graphene materials. Nat Mater 9:555–558

    Article  PubMed  CAS  ADS  Google Scholar 

  9. Cao J, Qi GQ, Yang MB et al (2012) Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J Mater Sci 47:5097–5105

    Article  CAS  ADS  Google Scholar 

  10. Wilson NR, Pandey PA, Sloan J et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547–2556

    Article  PubMed  CAS  Google Scholar 

  11. Thomas HR, Wilson NR, Rourke JP et al (2013) Identifying the fluorescence of graphene oxide. J Mater Chem C 1:338–342

    Article  CAS  Google Scholar 

  12. Rourke JP, Pandey PA, Wilson NR et al (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 50:3173–3177

    Article  CAS  Google Scholar 

  13. Botas C, Álvarez P, Menéndez R et al (2012) The effect of the parent graphite on the structure of graphene oxide. Carbon 50:275–282

    Article  CAS  Google Scholar 

  14. Pan SY, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5:4073–4083

    Article  PubMed  CAS  Google Scholar 

  15. Zhang L, Liang J, Chen YS et al (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:3365–3368

    Article  CAS  Google Scholar 

  16. Khan U, O’Neill A, Coleman JN et al (2012) Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50:470–475

    Article  CAS  Google Scholar 

  17. Wang XL, Bai H, Shi GQ (2011) Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J Am Chem Soc 133:6338–6342

    Article  PubMed  CAS  Google Scholar 

  18. Wu CK, Wang GJ, Dai JF (2013) Controlled functionalization of graphene oxide through surface modification with acetone. J Mater Sci 48:3436–3442

    Article  CAS  ADS  Google Scholar 

  19. Vichchulada P, Cauble MA, Lay MD et al (2010) Sonication power for length control of single-walled carbon nanotubes in aqueous suspensions used for 2-dimensional network formation. J Phys Chem C 114:12490–12495

    Article  CAS  Google Scholar 

  20. Xie D, Su QM, Zhang J, Du GH, Xu BS (2013) Graphite oxide-assisted sonochemical preparation of α-Bi2O3 nanosheets and their high-efficiency visible light photocatalytic activity. J Mater Sci. doi:10.1007/s10853-013-7695-9

    Google Scholar 

  21. Veerapandian M, Subbiah R, Lee MH et al (2011) Copper-glucosamine microcubes: synthesis, characterization, and C-reactive protein detection. Langmuir 27:8934–8942

    Article  PubMed  CAS  Google Scholar 

  22. Deng C, Hu H, Ge X, Han C, Zhao D, Shao G (2011) One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason Sonochem 18:932–937

    Article  PubMed  CAS  Google Scholar 

  23. Pinjari DV, Pandit AB (2011) Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrason Sonochem 18:1118–1123

    Article  PubMed  CAS  Google Scholar 

  24. Safarifard V, Morsali A (2012) Sonochemical syntheses of a nano-sized copper(II) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles. Ultrason Sonochem 19:823–829

    Article  PubMed  CAS  Google Scholar 

  25. Stankovich S, Dikin DA, Ruoff RS et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  27. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  28. Cai WW, Piner RD, Ruoff RS et al (2008) Synthesis and solid-state NMR structural sharacterization of 13C-labeled graphite oxide. Science 321:1815–1817

    Article  PubMed  CAS  ADS  Google Scholar 

  29. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by Near-infrared irradiation. J Phys Chem B 115:6279–6288

    Article  PubMed  CAS  Google Scholar 

  30. McAllister MJ, Li JL, Aksay IA et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4044–4396

    Google Scholar 

  31. Scherrer P, Nachrichten G (1918) Gesell 2:98–100

    Google Scholar 

  32. Dikin DA, Stankovich S, Ruoff RS et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  PubMed  CAS  ADS  Google Scholar 

  33. Lerf A, Buchsteiner A, Boehm HP et al (2006) Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids 67:1106–1110

    Article  CAS  ADS  Google Scholar 

  34. Szabo T, Berkesi O, Dekany I et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749

    Article  CAS  Google Scholar 

  35. Li JL, Kudin KN, Car R et al (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101 (1–4)

    ADS  Google Scholar 

  36. Ajayan PM, Yakobson BI (2006) Material science: oxygen breaks into carbon world. Nature 441:818–819

    Article  PubMed  CAS  ADS  Google Scholar 

  37. Wu ZS, Ren WC, Cheng HM et al (2010) Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res 3:16–22

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, X., Zhou, T., Deng, S. et al. Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization. J Mater Sci 49, 1785–1793 (2014). https://doi.org/10.1007/s10853-013-7866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7866-8

Keywords

Navigation