Skip to main content
Log in

Changes in the properties of wood cell walls during the transformation from sapwood to heartwood

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Changes in the chemical, viscoelastic and hygroscopic properties of wood cell walls in Chinese fir (Cunninghamia lanceolata) during the transition from sapwood to heartwood were studied to provide insights into the formation of heartwood. In situ imaging FTIR measurements indicated that the composition of the main components of cell walls remained almost unaltered, but more extractives were deposited in the wood cell walls during the sapwood–heartwood transition. Compared to the sapwood and transition wood, the heartwood had a higher softening temperature and greater activation energy, suggesting that the mobility restrictions of cell wall biopolymers were due to extractives obstructing the accessing of the plasticizer (ethylene glycol). The moisture sorption was the same from the sapwood to heartwood at a low relative humidity (RH), while the heartwood adsorbed less water at a high RH, probably caused by the extractives deposited in the matrix and mesopores of heartwood cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hillis WE (1985) Occurrence of extractives in wood tissue. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, pp 209–228

    Google Scholar 

  2. Huang Z, Tsai C-J, Harding SA, Meilan R, Woeste K (2010) A cross-species transcriptional profile analysis of heartwood formation in black walnut. Plant Mol Biol Rep 28:222–230

    Article  CAS  Google Scholar 

  3. Dehon L, Macheix JJ, Durand M (2002) Involvement of peroxidases in the formation of the brown coloration of heartwood in Juglans nigra. J Exp Bot 53:303–311

    Article  PubMed  CAS  Google Scholar 

  4. Kuroda K, Yamashita K, Fujiwara T (2009) Cellular level observation of water loss and the refilling of tracheids in the xylem of Cryptomeria japonica during heartwood formation. Trees 23:1163–1172

    Article  CAS  Google Scholar 

  5. Sorz J, Hietz P (2008) Is oxygen involved in beech (Fagus sylvatica) red heartwood formation? Trees 22:175–185

    Article  CAS  Google Scholar 

  6. Burtin P, Jay-Allemand C, Charpentier J-P, Janin G (1998) Natural wood colouring process in Juglans sp. (J-nigra, J-regia and hybrid J-nigra 23 x J-regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 12:258–264

    Google Scholar 

  7. Climent J, Chambel MR, Gil L, Pardos JA (2003) Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. For Ecol Manage 174:203–211

    Article  Google Scholar 

  8. Song K, Liu B, Jiang X, Yin Y (2011) Cellular changes of tracheids and ray parechyma cells from cambium to heartwood in Cunninghamia lanceolata. J Trop Forest Sci 23:478–487

    Google Scholar 

  9. Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability-a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

  10. Fratzl P, Burgert I, Keckes J (2004) Mechanical model for the deformation of the wood cell wall. Zeitschrift Fur Metallkunde 95:579–584

    Article  CAS  Google Scholar 

  11. Page DH (1976) A note on the cell-wall structure of softwood tracheids. Wood Fiber Sci 7:246–248

    CAS  Google Scholar 

  12. Salmén L, Olsson A-M (1998) Interation between hemicelluloses, lignin and cellulose: structure-property relationships. J Pulp Pap Sci 24:99–103

    Google Scholar 

  13. Brandt B, Zollfrank C, Franke O, Fromm J, Goken M, Durst K (2010) Micromechanics and ultrastructure of pyrolysed softwood cell walls. Acta Biomater 6:4345–4351

    Article  PubMed  Google Scholar 

  14. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: wood machining - micromechanics and fracture. Holzforschung 63:121–129

    Article  Google Scholar 

  15. Yin Y, Berglund L, Salmén L (2011) Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12:194–202

    Article  PubMed  CAS  Google Scholar 

  16. Donaldson L (2008) Mirofibril angle: measurement, variation and relationships-a review. IAWA J 29:345–386

    Article  Google Scholar 

  17. Mauseth JD (2008) Plant anatomy. The Backburn Press, Caldwell

    Google Scholar 

  18. Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256

    CAS  Google Scholar 

  19. Bergström B (2003) Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 76:45–53

    Article  Google Scholar 

  20. Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpaa P, Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of measuring techniques. J Wood Sci 46:343–349

    Article  Google Scholar 

  21. Bag R, Beaugrand J, Dole P, Kurek B (2011) Viscoelastic properties of woody hemp core. Holzforschung 65:239–247

    Article  CAS  Google Scholar 

  22. Laborie M-P, Salmén L, Frazier CE (2004) Cooperativity analysis of the in situ lignin glass transition. Holzforschung 58:129–133

    Article  CAS  Google Scholar 

  23. Salmén L (1984) Viscoelastic properties of in situ lignin under water-saturated conditions. J Mater Sci 19:3090–3096

    Article  ADS  Google Scholar 

  24. Stevanic JS, Bergström EM, Gatenholm P, Berglund L, Salmén L (2012) Arabinoxylan/nanofibrillated cellulose composite films. J Mater Sci 47:6724–6732

    Article  CAS  ADS  Google Scholar 

  25. Wetton RE (1986) Dynamic mechanical thermal analysis of polymers and related systems. In: Dawkins JV (ed) Development in polymer characterization. Elsevier, Barking, pp 179–221

    Google Scholar 

  26. Hagen R, Salmén L, Lavebratt H, Stenberg B (1994) Comparison of dynamic mechanical measurements and Tg determinations with two different instruments. Polym Test 13:113–128

    Article  CAS  Google Scholar 

  27. Olsson A-M, Salmén L (1992) Viscoelasticity of in situ lignin as affected by structure, softwood vs. hardwood. ACS Symp Ser 489:133–143

    Article  CAS  Google Scholar 

  28. Uhmeier A, Salmén L (1996) Influence of strain rate and temperature on the radial compression behavior of wet spruce. J Eng Mater-T Asme 118:289–294

    Article  Google Scholar 

  29. Yin Y, Bian M, Song K, Xiao F, Jiang X (2011) Influence of microfibril angle on within-tree variation in the mechanical properties of Chinese Fir (Cunninghamia lanceolata). IAWA J 32:431–442

    Google Scholar 

  30. Yin Y, Song K, Liu B, Jiang X (2011) Variation of microfibril angle in Plantation trees of Cunninghamia lanceolata determined by pit apertures and X-ray diffraction. IAWA J 32:77–87

    Article  Google Scholar 

  31. Bao F, Jiang Z (1998) Wood properties of main tree species from plantation in China. China Forestry Publishing House, Beijing

    Google Scholar 

  32. Sahlberg U, Salmén L, Oscarsson A (1997) The fibrillar orientation in the S2-layer of wood fibres as determined by x-ray diffraction analysis. Wood Sci Technol 31:77–86

    CAS  Google Scholar 

  33. Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969

    Article  Google Scholar 

  34. Stevanic JS, Salmén L (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63:497–503

    Article  CAS  Google Scholar 

  35. Åkerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57:459–465

    Article  Google Scholar 

  36. Collier WE, Schultz TP, Kalasinsky VF (1992) Infrared study of lignin: reexamination of aryl-alkyl ether C-O stretching peak assignments. Holzforschung 46:523–528

    Article  CAS  Google Scholar 

  37. Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  38. Qin T, Huang L, Zhou Q (2004) The chemical groups and bonds characterization of juvenile wood and mature wood lignins of Chinese Fir. Sci Silvae Sin 40:137–141

    CAS  Google Scholar 

  39. Qin T (2001) Study on FTIR, 1H and 13C NMR characterization of Poplar I-214 heartwood and sapwood lignins. For Res 14:375–382

    Google Scholar 

  40. Hillis WE (1971) Distribution, properties and formation of some wood extractives. Wood Sci Technol 5:272–289

    Article  CAS  Google Scholar 

  41. Kampe A, Magel E (2013) New insights into heartwood and heartwood formation. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Berlin Heidelberg, pp 71–95

    Chapter  Google Scholar 

  42. Lu X, Wang D, Zhou M (1987) Influence of the extractives of Chinese fir wood upon their natural resistance to fungus and termite damages. Sci Silvae Sin 23:456–462

    CAS  Google Scholar 

  43. Kleist G, Bauch J (2001) Cellular UV microspectrophotometric investigation of Sapelli heartwood (Entandrophragma cylindricum Sprague) from natural provenances in Africa. Holzforschung 55:117–122

    CAS  Google Scholar 

  44. Wang J, Li J, Li S (2011) Components of Cunninghamin lanceolata heartwood extracts. Mater Sci Forum 685:188–194

    Article  CAS  Google Scholar 

  45. Adamopoulos S, Koch G (2011) Wood structure and topochemistry of Juniperus excelsa. IAWA J 32:67–76

    Article  Google Scholar 

  46. Wennerblom M, Olsson A-M (1996) Softening properties of earlywood and latewood of spruce. Nord Pulp Paper Res J 11:279–280

    Article  CAS  Google Scholar 

  47. Watanabe Y, Kojima Y, Ona T et al (2004) Histochemical study on heterogeneity of lignin in Eucalyptus species II. The distribution of lignins and polyphenols in the walls of various cell types. IAWA J 25:283–295

    Article  Google Scholar 

  48. Matsunaga M, Obataya E, Minato K, Nakatsubo F (2000) Working mechanism of adsorbed water on the vibrational properties of wood impregnated with extractives of pernambuco (Guilandina echinata Spreng.). J Wood Sci 46:122–129

    Article  CAS  Google Scholar 

  49. Rautkari L, Hill CAS, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? Journal of Mater Sci 48:6352–6356

    Article  CAS  ADS  Google Scholar 

  50. Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  PubMed  CAS  Google Scholar 

  51. Choong ET, Achmadi SS (1991) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23:185–196

    CAS  Google Scholar 

  52. Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa). Wood Fiber Sci 36:483–492

    CAS  Google Scholar 

  53. Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277

    Article  CAS  Google Scholar 

  54. Kuo M-L, Arganbright DG (1980) Cellular distribution of extractives in Redwood and Incense Cedar. Part II. Microscopic observation of the location of cell wall and cell cavity extractives. Holzforschung 34:41–47

    Article  CAS  Google Scholar 

  55. Tarkow H, Krueger J (1961) Distribution of hot-water soluble material in cell walls and cavities of redwood. Forest Prod J 11:228–229

    CAS  Google Scholar 

  56. Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64:11–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the Chinese State Forestry Administration Project (201104058) and the Chinese National Natural Science Foundation (No. 30972303). Gratitude goes to the following: Mingkun Xu and Lin Liu from the Chinese Research Institute of Wood Industry for the preparation of the samples, Anne-Mari Olsson of Innventia AB for her technical help when making the Dynamic Mechanical Analysis and dynamic vapour sorption, Dr. Jasna S. Stevanic of Innventia AB, Professor Tefu Qin and Dr. Yanming Han of Chinese Research Institute of Wood Industry for their valuable advice on imaging FTIR spectroscopy. Acknowledgement must also go to the support given to Lennart Salmén from the Wallenberg Wood Science Center (WWSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yafang Yin or Lennart Salmén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, K., Yin, Y., Salmén, L. et al. Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49, 1734–1742 (2014). https://doi.org/10.1007/s10853-013-7860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7860-1

Keywords

Navigation