Skip to main content
Log in

Comparative study of carbon nanotubes- and fullerenes-doped liquid crystal for different electrophoretic parameters

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This research focuses on the study of different electrokinetic parameters of carbon nanotubes (CNTs) and fullerene aggregates in liquid crystal (LC) host medium, which are investigated in the homogeneously aligned nematic LC cells driven by in-plane field. The colloidal CNTs in LC medium are observed to move towards the negative electrodes whereas the fullerenes in LC medium are observed to move towards positive electrode at low frequencies. We propose a model to estimate the charge and zeta potential of colloidal particles by incorporating both the dielectrophoresis and electrophoresis forces in order to probe the reason of moving the colloidal particles in opposite direction. Interestingly, charge and zeta potential values on CNTs and fullerenes estimated from given model were positive and negative, respectively. The CNTs and fullerenes at high frequency and field are found to stretch along the direction of electric field. The CNTs dispersed whereas fullerenes start to move in perpendicular direction to the applied electric field with increasing electric field at high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mayer H (1997) Electrorotation of colloidal particles and cells depends on surface charge. Biophys J 73:1617–1626

    Article  Google Scholar 

  2. Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes: the route toward applications. Science 297:787–792

    Article  PubMed  CAS  ADS  Google Scholar 

  3. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  PubMed  CAS  ADS  Google Scholar 

  4. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  PubMed  CAS  ADS  Google Scholar 

  5. Bert T, Smet HD, Beunis F, Neyts K (2006) Complete electrical and optical simulation of electronic paper. Displays 27:50–55

    Article  Google Scholar 

  6. Comiskey B, Albert JD, Yoshizawa H (1998) An electrophoretic ink for all-printed reflective electronic displays. Nature 394:253–255

    Article  CAS  ADS  Google Scholar 

  7. Fukuda J, Žumer S (2009) Confinement effect on the interaction between colloidal particles in a nematic liquid crystal: an analytical study. Phys Rev E 79:041703

    Article  ADS  Google Scholar 

  8. Fukuda J, Stark H, Yoneya M, Yokoyama H (2004) Interaction between two spherical particles in a nematic liquid crystal. Phys Rev E 69:041706

    Article  ADS  Google Scholar 

  9. Liao G, Smalyukh II, Kelly JR, Laverentovich OD, Jakli A (2005) Electrorotation of colloidal particles in liquid crystals. Phys Rev E 72:031704

    Article  CAS  ADS  Google Scholar 

  10. Ryzhkova AV, Podgornov FV, Haase W (2010) Nonlinear electrophoretic motion of dielectric microparticles in nematic liquid crystals. Appl Phys Lett 96:151901

    Article  ADS  Google Scholar 

  11. Bert T, Smet HD (2003) The microscopic physics of electronic paper revealed. Displays 24:103–123

    Article  Google Scholar 

  12. Bert T, Smet HD (2003) Dielectrophoresis in electronic paper. Displays 24:223–250

    Article  CAS  Google Scholar 

  13. Lavrentovich OD, Lazo I, Pishnyak OP (2010) Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal. Nature 467:947–950

    Article  PubMed  CAS  ADS  Google Scholar 

  14. Baik IS, Jeon SY, Jeong SJ, Lee SH, An KH, Jeong SH, Lee YH (2006) Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field. J Appl Phys 100:074306

    Article  ADS  Google Scholar 

  15. Srivastava AK, Jeong SJ, Lee MH, Lee SH, Jeong SH, Lee YH (2007) Dielectrophoresis force driven dynamics of carbon nanotubes in liquid crystal medium. J Appl Phys 102:043503

    Article  ADS  Google Scholar 

  16. Jeong SJ, Sureshkumar P, Jeong KU, Srivastava AK, Lee SH, Jeong SH, Lee YH, Lu R, Wu ST (2007) Unusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal. Opt Express 15:11698–11705

    Article  PubMed  CAS  ADS  Google Scholar 

  17. Srivastava AK, Kim M, Kim SH, Kim MK, Lee K, Lee YH, Lee MH, Lee SH, Lee YH (2009) Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium. Phys Rev E 80:051702

    Article  ADS  Google Scholar 

  18. Jeong SJ, Park KA, Jeong SH, Jeong HJ, An KH, Nah CW, Pribat D, Lee SH, Lee YH (2007) Electroactive superelongation of carbon nanotube aggregates in liquid crystal medium. Nano Lett 7:2178–2182

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Sureshkumar P, Srivastava AK, Jeong SJ, Kim M, Jo EM, Lee SH, Lee YH (2009) Anomalous electrokinetic dispersion of carbon nanotube clusters in liquid crystal under electric field. J NanoSci Nanotechnol 9:4741–4746

    Article  PubMed  CAS  Google Scholar 

  20. Baik IS, Lee JY, Jeon SY, An KH, Choi JW, Lee SH, Lee YH (2005) Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl Phys Lett 87:263110

    Article  ADS  Google Scholar 

  21. Jeon SY, Park KA, Baik IS, Jeong SJ, Jeong SH, An KH, Lee SH, Lee YH (2007) Dynamic response of carbon nanotubes dispersed in nematic liquid crystal. NANO 2:41–49

    Article  CAS  Google Scholar 

  22. Attard P, Antelmi D, Larson L (2000) Comparison of the zeta potential with the diffuse layer potential from charge titration. Langmuir 16:1542–1552

    Article  CAS  Google Scholar 

  23. Jones TB (1984) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):33–42

    Article  Google Scholar 

  24. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256

    Article  PubMed  CAS  ADS  Google Scholar 

  25. Lazo I, Lavrentovich OD (2013) Liquid-Crystal-enabled electrophoresis of spheres in a nematic medium with negative dielectric anisotropy. Philos Trans R Soc A 371:20120255

    Article  ADS  Google Scholar 

  26. Ryzhkova AV, Podgornov FV, Gaebler A, Jakoby R, Haase W (2013) Measurements of the electrokinetic forces on dielectric microparticles in nematic liquid crystals using optical trapping. J Appl Phys 113:244902

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Department of Science and Technology, New Delhi, India under the scheme SERC Fast Track Young Scientist Project SR/FTP/PS-037/2011 entitled “Electrical and electrodynamical studies of carbon nanotubes dispersed in liquid crystal” at the Nanotechnology Application Centre, University of Allahabad, India. One of authors (SHL) would like to thank financial support funded by the Brain Korea 21 PLUS project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anoop Kumar Srivastava or Seung Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A.K., Pandey, A.C., Kripal, R. et al. Comparative study of carbon nanotubes- and fullerenes-doped liquid crystal for different electrophoretic parameters. J Mater Sci 49, 1695–1700 (2014). https://doi.org/10.1007/s10853-013-7854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7854-z

Keywords

Navigation