Skip to main content

Advertisement

Log in

Energy storage properties of (1 − x)(Bi0.5Na0.5)TiO3xKNbO3 lead-free ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a simple compound (1 − x)(Bi0.5Na0.5)TiO3xKNbO3 (x = 0 – 0.12) lead-free bulk ceramic was developed for high electric power pulse energy storage applications. The dielectric and ferroelectric properties of the ceramics were measured. The results illustrate that the energy storage density of the ceramics is enhanced by the addition of KNbO3. The influence of applied electric field, temperature, and fatigue on the energy storage properties of the ceramics was evaluated for the composition-optimized (Bi0.5Na0.5)TiO3–0.1KNbO3 ceramic. The results demonstrate that (Bi0.5Na0.5)TiO3–0.1KNbO3 ceramic is a promising lead-free material for high power pulse capacitor applications. The excellent energy storage properties of the (Bi0.5Na0.5)TiO3–0.1KNbO3 ceramics are ascribed to the reversible relaxor–ferroelectric phase transition induced by the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Wada S, Yasuno H, Hoshina T, Nam S, Kakemoto H, Tsurumi T (2003) Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn J Appl Phys 42:6188–6195

    Article  CAS  ADS  Google Scholar 

  3. Karan NK, Saavedra-Arias JJ, Perez M, Thomas R, Katiyar RS (2008) High energy density metal–insulator–metal capacitors with Ba[(Ni1/2W1/2)0.1Ti0.9]O3 thin films. Appl Phys Lett 92:012903

    Article  ADS  Google Scholar 

  4. Harigai T, Tanaka D, Kakemoto H, Wada S, Tsurumi T (2003) Dielectric properties of BaTiO3/SrTiO3 superlattices measured with interdigital electrodes and electromagnetic field analysis. J Appl Phys 94:7923

    Article  CAS  ADS  Google Scholar 

  5. Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT, Ratner MA, Marks TJ (2010) In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem Mater 18:5154–5164

    Article  Google Scholar 

  6. Tomer V, Polizos G, Manias E, Randall CA (2010) Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage. J Appl Phys 108:074116

    Article  ADS  Google Scholar 

  7. Zhang Q, Wang L, Luo J, Tang Q, Du J (2009) Improved energy storage density in barium strontium titanate by addition of BaO–iO2–B2O3 glass. J Am Ceram Soc 92:1871–1873

    Article  CAS  Google Scholar 

  8. Chen X, Dong X, Wang G, Cao F, Wang Y (2008) Doped Pb(Zr,Sn,Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 363:56–63

    Article  CAS  Google Scholar 

  9. Parui J, Krupanidhi SB (2008) Enhancement of charge and energy storage in sol–gel derived pure and La-modified PbZrO3 thin films. Appl Phys Lett 92:192901

    Article  ADS  Google Scholar 

  10. Ma B, Kwon D, Narayanan M, Balachandran U (2008) Dielectric properties of PLZT film-on-foil capacitors. Mater Lett 62:3573–3575

    Article  CAS  Google Scholar 

  11. Ma B, Tong S, Narayanan M, Liu S, Chao S, Balachandran U (2011) Fabrication and dielectric property of ferroelectric PLZT films grown on metal foils. Mater Res Bull 46:1124–1129

    Article  CAS  Google Scholar 

  12. Hao X (2013) A review on the dielectric materials for high energy-storage application. J Adv Dialect 3:1330001

    Article  Google Scholar 

  13. Kwon DK, Lee MH (2011) Temperature stable high energy density capacitors using complex perovskite thin films, applications of ferroelectrics (ISAF/PFM), 2011 Int. Symp. and 2011 Int. Symp. In: Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Mater, pp. 1–4

  14. Ortega N, Kumar A, Scott JF, Chrisey DB, Tomazawa M, Kumari S, Diestra DGB, Katiyar RS (2012) Relaxor–ferroelectric superlattices: high energy density capacitors. J Phys 24:1–445901

    Google Scholar 

  15. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236

    Article  CAS  ADS  Google Scholar 

  16. Jones GO, Thomas PA (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr B 58:16

    Google Scholar 

  17. Dorcet V, Trolliard G, Boullay P (2008) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Chem Mater 20:5061

    Article  CAS  Google Scholar 

  18. Zhang S, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Rodel J, Damjanovic D (2009) High-strain lead-free antiferroelectric electrostrictors. Adv Mater 21:4716–4720

    CAS  Google Scholar 

  19. Zhang S, Kounga AB, Aulbach E, Ehrenberg H, Rödel J (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906

    Article  ADS  Google Scholar 

  20. Gao F, Dong X, Mao C, Liu W, Zhang H, Yang L, Cao F, Wang G (2011) Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94:4382

    Article  CAS  Google Scholar 

  21. Viola G, Ning H, Reece MJ, Wilson R, Correia TM, Weaver P, Cain MG, Yan H (2012) Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics. J Phys D 45:355302

    Article  Google Scholar 

  22. Ni F, Luo L, Li W, Chen H (2012) A-site vacancy-induced giant strain and the electrical properties in non-stoichiometric ceramics Bi0.5+x (Na1−y K y )0.5−3x TiO3. J Phys D 45:415103

    Article  Google Scholar 

  23. Wang B, Luo L, Jiang X, Li W, Chen H (2013) Energy-storage properties of (1 − x)Bi0.47Na0.47Ba0.06TiO3xKNbO3 lead-free ceramics. J Alloys Comp 585:14–18

    Article  Google Scholar 

  24. Lee BW, Lee EJ (2006) Effects of complex doping on microstructural and. electrical properties of PZT ceramics. J Electroceram 17:597

    Article  Google Scholar 

  25. Pereira M, Peixoto AG, Gomes MJM (2001) Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J Eur Ceram Soc 21:1353

    Article  CAS  Google Scholar 

  26. Weston TB, Webster AH, McNamara VM (1969) Lead zirconate titanate piezoelectric ceramics with iron oxide additions. J Am Ceram Soc 52:253–257

    Article  CAS  Google Scholar 

  27. Kling J, Tan X, Jo W, Kleebe HJ, Fuess H, Rodel J (2010) In situ transmission electron microscopy of electric field-triggered reversible domain formation in bi-based lead-free piezoceramics. J Am Ceram Soc 93:2452

    Article  CAS  Google Scholar 

  28. Dai Y, Zhang S, Shrout T, Zhang X (2010) Piezoelectric and ferroelectric properties of li-doped (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. J Am Ceram Soc 93:1108

    Article  CAS  Google Scholar 

  29. Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe HJ, Bell AJ, Rodel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J Appl Phys 110:074106

    Article  ADS  Google Scholar 

  30. Jo W, Daniels J, Damjanovic D, Kleemann W, Rödel J (2013) Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3. Appl Phys Lett 102:192903

    Article  ADS  Google Scholar 

  31. Samara GA (2001) Ferroelectricity revisited-advances in materials and physics. Sol State Phys 56:239

    CAS  ADS  Google Scholar 

  32. Zhang H, Chen X, Cao F, Wang G, Dong X (2010) Charge–discharge properties of an antiferroelectric ceramics capacitor under different electric fields. J Am Ceram Soc 93:4015

    Article  CAS  Google Scholar 

  33. Chen X, Zhang H, Cao F, Wang G, Dong X, Gu Y, He H, Liu Y (2009) Poling temperature tuned electric-field-induced ferroelectric to antiferroelectric phase transition in 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 ceramics. J Appl Phys 106:034105

    Article  ADS  Google Scholar 

  34. Burn I, Smyth DM (1972) Energy storage in ceramic dielectrics. J Mater Sci 7:339–343

    Article  CAS  ADS  Google Scholar 

  35. Ogihara H, Randall CA, Trolier-Mckinstry S (2009) High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J Am Ceram Soc 92:1719

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51002082, 61378068), the Natural Science Foundation of Ningbo (2012A610118), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laihui Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Wang, B., Jiang, X. et al. Energy storage properties of (1 − x)(Bi0.5Na0.5)TiO3xKNbO3 lead-free ceramics. J Mater Sci 49, 1659–1665 (2014). https://doi.org/10.1007/s10853-013-7849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7849-9

Keywords

Navigation