Abstract
Current developments in kinetic and thermodynamic stabilization of grains in nanostructured metals, alloys, and compounds are generalized and discussed in detail. As applied to the thermodynamic approach, attention has recently shifted from using the regular solution approximation to estimating thermodynamic properties of nanomaterials by considering both inner regions of nanograins and their grain boundaries. This situation is discussed and examples for alloys based on iron, copper, tungsten, and other elements are presented. Experimental information about behavior of nanomaterials subjected to radiation or oxidation is considered, along with recent experiments on abnormal grain growth.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andrievski RA (2003) Review: stability of nanostructured materials. J Mater Sci 38:1367–1874. doi:10.1023/A:1022988706296
Koch CC, Ovid’ko IA, Seal S, Veprek S (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, Cambridge
Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414. doi:10.1007/s10853-006-0609-3
Gupta A, Sharma S, Jopshi MR, Agrawal P, Balani K (2010) Grain growth behavior of Al2O3 nanomaterials: a review. Mater Sci Forum 653:87–130
Andrievski RA (2012) Fundamentals of nanostructured materials science. Possibilities and challenges. BINOM, Laboratory of knowledge, Moscow (in Russian)
Weertman JR (2012) Retaining the nano in nanocrystalline alloys. Science 327:921–922
Castro RHR (2013) On the thermodynamic stability of nanocrystalline ceramics. Mater Lett 96:45–56
Upmanyu M, Srolovitz DJ, Lobkovsky AE, Warren JA, Carter WC (2006) Simultaneous grain boundary migration and grain rotation. Acta Mater 54:1707–1715
Bernstein N (2008) The influence of geometry on grain boundary motion and rotation. Acta Mater 56:1106–1113
Zizak I, Darowski N, Klaumünzer S, Schumacher G, Gerlach JW (2009) Grain rotation in nanocrystalline layers under influence of swift heavy ions. Nucl Instr Meth Phys Res B 267:944–948
Chaim R (2012) Groan coalescence by grain rotation in nanoceramics. Scr Mater 66:269–271
Novikov VY (2010) On grain growth in the presence of mobile particles. Acta Mater 58:3321–3326
Novikov VYu (2012) Microstructure evolution during grain growth in materials with disperse particles. Mater Lett 68:413–415
Gottstein G, Shvindlerman LS (2005) A novel concept to determine the mobility of grain boundary quadruple Junctions. Scr Mater 52:863–866
Novikov VYu (2008) Impact of grain boundary junctions on grain growth in polycrystals with different grain sizes. Mater Lett 62:2067–2069
Zhao B, Gottstein G, Shvindlerman LS (2011) Triple junction effects in solids. Acta Mater 59:3510–3518
Klinger L, Rabkin E, Shvindlerman LS, Gottstein G (2008) Grain growth in porous two-dimensional nanocristalline materials. J Mater Sci 43:5068–5075. doi:10.1007/s10853-008-2678-y
Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112. doi:10.1103/PhysRevB.79.094112
Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954
Murdoch HA, Schuh CA (2013) Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater 61:2121–2132
Saber M, Kotan H, Koch CC, Scattergood RO (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113:063515. doi:10.1063/1.4791704
Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Thermal stability of nanocrystalline Fe–Zr alloys. Mater Sci Eng A 527:3572–3580
Xu WW, Song XY, Li ED, Wei J, Zhang JX (2009) Thermodynamic study on phase stability in nanocrystalline Sm–Co alloy system. J Appl Phys 105:104310. doi:10.1063/1.3129502
Xu W, Song X, Lu N, Huang Ch (2010) Thermodynamic and experimental study on phase stability in nanocrystalline alloys. Acta Mater 58:396–407
Xu W, Seng X, Zhang Z (2010) Thermodynamic study on metastable phase: from polycrystalline to nanocrystalline system. Appl Phys Lett 97:181911. doi:10.1063/1.3509407
Gartner F, Bormann R, Birringer R, Tschöpe A (1996) Thermodynamic stability of nanocrystalline palladium. Scr Mater 35:805–810
Xu W, Song X, Lu N, Seyring M, Rettenmayr M (2009) Nanoscale thermodynamic study on phase transformation in the nanocrystalline Sm2Co17 alloy. Nanoscale 1:238–244
Xu W, Song X, Zhang ZX (2012) Multiphase equilibrium, phase stability and phase transformation in nanocrystalline alloy systems. Nano Brief Rep Rev 7:125012. doi:10.1142/S1793292012500129
Zhang RF, Veprek S (2008) Phase stability of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1−x Si x N y solid solution studied by ab initio calculation and thermodynamic modeling. Thin Solid Films 516:2264–2275
Sheng SH, Zhang RF, Veprek S (2011) Phase stabilities and decomposition mechanism in the Zr–Si–N system studied by combined ab initio DFT and thermodynamic calculation. Acta Mater 59:297–307
Sheng SH, Zhang RF, Veprek S (2011) Study of spinodal decomposition and formation of nc-Al2O3/ZrO2 nanocomposites by combined ab initio density functional theory and thermodynamic modeling. Acta Mater 59:3498–3509
Ivashchenko VI, Veprek S, Turchi PEA, Shevchenko VI (2012) Comparative first-principles study of TiN/SiN x /TiN interfaces. Phys Rev B 85:195403. doi:10.1103/PhysRevB.85.195403
Ivashchenko VI, Veprek S, Turchi PEA, Shevchenko VI (2012) First-principles study of TiN/SiC/TiN Interfaces in superhard nanocomposites. Phys Rev B 86:014110. doi:10.1103/PhysRevB.86.014110
Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371
Atwater MA, Scattergood RO, Koch CC (2013) The stabilization of nanocrystalline copper by zirconium. Mater Sci Eng A 559:250–256
Detor AJ, Schuh CA (2007) Tailoring and pattering the grain size of nanocrystalline alloys. Acta Mater 55:371–379
Detor AJ, Schuh CA (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulation in the Ni–W system. Acta Mater 55:4221–4232
Detor AJ, Schuh CA (2007) Microstructural evolution during the heat treatment of nanocrystalline alloys. J Mater Res 22:3233–3248
Koch CC, Scattergood RO, Saber M, Kotan H (2013) High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies. J Mater Res 28:1785–1791
Atwater MA, Roy D, Darling KA, Butler BG, Scattergood RO, Koch CC (2012) The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater Sci Eng A 558:226–233
Darling KA, Roberts AJ, Mishin Y, Mathaudhu SN, Kecskes LJ (2013) Grain size stabilization of nanocrystalline copper at high temperature by alloying with tantalum. J Alloy Compd 573:142–150
Frolov T, Darling KA, Kecskes LJ, Mishin Y (2012) Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Mater 60:2158–2168
Özerinç S, Tai K, Vo NQ, Bellon P, Averback RS, King WP (2012) Grain boundary doping strengthens nanocrystalline copper alloys. Scr Mater 67:720–723
Koch CC, Scattergood RO, VanLeeuwen BK, Darling KA (2012) Thermodynamic stabilization of grain size in nanocrystalline metals. Mater Sci For 715–716:323–328
Darling KA, Kecskes LJ, Atwater M, Semones J, Scattergood RO, Koch CC (2013) Thermal stability of nanocrystalline nickel with yttrium additions. J Mater Res 28:1813–1819
McClintock DA, Sokolov MA, Hoelzer DT, Nanstad RK (2009) Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater 392:353–359
Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Ann Rev Mater Res 38:471–503
Andrievski RA (2011) Behavior of radiation defects in nanomaterials. Rev Adv Mater Sci 29:54–67
Dubuisson P, de Carlan Y, Garat V, Blat M (2012) ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J Nucl Mater 428:6–12
Wang XL, Liu CT, Keiderling U, Stoica AD, Yang L, Miller MK, Fu CL, Ma D, An K (2012) Unusual thermal stability of nano-structured ferritic alloys. J Alloy Compd 529:96–101
Etienne A, Radiguet B, Cunningham NJ, Odette GR, Valiev R, Pareige P (2011) Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels. Ultramicroscopy 111:659–663
Miller MK, Hoelzer DT (2011) Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys. J Nucl Mater 418:307–310
Lescoat M-L, Monnet I, Ribis J, Dubuisson P, de Carlan Y, Costantini J-M, Malaplate J (2011) Amorphization of oxides in ODS materials under low and high energy ion irradiations. J Nucl Mater 417:266–269
Lescoat M-L, Ribis J, Gentils A, Kaïtasov O, de Carlan Y, Legris A (2012) In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J Nucl Mater 428:176–182
Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer DT, Allen TR (2013) Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J Nucl Mater 434:311–321
Miao P, Odette GR, Yamamoto T, Alinger M, Kligensmith D (2008) Thermal stability of nano-structured ferritic alloy. J Nucl Mater 377:59–64
Mao X, Kim TK, Kim SS, Oh KH, Jang J (2012) Thermal stability of oxide particles in 12Cr ODS steel. J Nucl Mater 428:82–89
He P, Klimenkov M, Lindau R, Möslang A (2012) Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application. J Nucl Mater 428:131–138
Zhong SY, Ribis J, Klosek V, de Carlan Y, Lochet N, Ji V, Mathon MH (2012) Study of the thermal stability of nanoparticles distributions in an oxide dispersion strengthened (ODS) ferritic alloys. J Nucl Mater 428:154–159
Hirata A, Fujita T, Liu CT, Chen MW (2012) Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Mater 60:5686–5696
Fu CL, Krčmar M, Painter GS, Chen X-Q (2007) Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys Rev Lett 99:225502. doi:10.1103/PhysRevLett.99.225502
Jenei P, Gubicza J, Yoon EY, Kim HS, Labar JL (2013) High temperature thermal stability of pure coppercarbon nanotubes composites consolidated by high pressure torsion. Compos A 51:71–79
Hegedüs Z, Gubicza J, Kawasaki M, Chinh NQ, Lábár JL, Langdon TG (2013) Stability of the ultrafinegrained microstructure in silver by ECAP and HPT. J Mater Sci 48:4637–4645. doi:10.1007/s10853-012-7124-5
Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W, Mara NA (2013) High-strength and thermally stable bulk nanolayered composites due twin-induced interfaces. Nature Comm 4:1696. doi:10.1038/ncomms2651
Shen YF, Lu L, Lu QH, Jin ZH, Lu K (2005) Tensile properties of copper with nano-scale twins. Scr Mater 52:989–994
Anderoglu O, Misra A, Wang H, Zhang X (2008) Thermal stability of sputtered Cu films with nanoscale growth twins. J Appl Phys 103:094322. doi:10.1063/1.2913322
Chen Y, Liu Y, Khatkhatay F, Sun C, Wang H, Zhang X (2012) Significant enhancement in the thermal stability of nanocrystalline metals via immiscible tri-phases. Scr Mater 67:177–180
Zhang X, Wen J, Bellon P, Averback RS (2013) Irradiation-induced selective precipitation in Cu–Nb–W alloys: an approach towards coarsening resistance. Acta Mater 61:2004–2015
Chokshi AH (2008) Triple junction limited grain growth in nanomaterials. Scr Mater 59:726–729
Novikov V (1996) Grain growth and control of microstructure and texture in polycrystalline materials. CRC Press, Boca Raton
Gottstein G, Shvindlerman LS (2010) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press, Boca Raton
Gottstein G, Shvindlerman LS, Zhao B (2010) Thermodynamics and kinetics of grain boundary triple junctions in metals: recent developments. Scr Mater 62:914–917
Ames M, Markmann J, Karos R, Michels A, Tschöpe A, Birringer R (2008) Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater 56:4255–4266
Konkova T, Mironov S, Korznikov A, Semiatin SL (2010) Microstructure instability in cryogenically deformed copper. Scr Mater 63:921–924
Cheng L, Hibbard GD (2008) Abnormal grain growth via migration of planar growth interfaces. Mater Sci Eng A 492:128–133
Hattar K, Follstaedt DM, Knapp JA, Robertson IM (2008) Defect structures created during ab normal grain growth in pulsed-laser deposited nickel. Acta Mater 56:794–801
Kacher J, Robertson IM, Nowell M, Knapp J, Hattar K (2011) Study of rapid grain boundary migration in a nanocrystallin Ni thin film. Mater Sci Eng A 528:1628–1635
Paul H, Krill CE III (2011) Abnormally linear grain growth in nanocrystalline Fe. Scr Mater 65:5–8
Kotan H, Darling KA, Saber M, Scattergood RO, Koch CC (2013) An in situ experimental study of grain growth in a nanocrystalline Fe91Ni6Zr1 alloy. J Mater Sci 48:2251–2257. doi:10.1007/s10853-012-7002-1
Mannesson K, Jeppsson J, Borgenstam A, Ågren J (2011) Carbide grain growth in cemented carbides. Acta Mater 59:1912–1923
McKie A, Herrmann M, Sigalas I, Sempf K, Nilen R (2013) Suppression of abnormal grain growth in fine grained polycrystalline diamond materials (PCD). Int J Refract Met Hard Mater 41:66–72
Novikov VY (2011) On abnormal grain growth in nanocrystalline materials induced by small particles. Int J Mater Res 4:446–451
Novikov VY (2011) Abnormal grain growth in thin films not caused by decreased energy of their free surface. Mater Lett 65:2618–2620
Novikov VY (2012) Grain Growth and disperse particles: impact of triple junctions. Mater Lett 84:136–138
Novikov VY (2013) Grain growth suppression in nanocrystalline materials. Mater Lett 100:271–273
Sprengel W, Oberdorfer B, Steyskal E-M, Würschum R (2012) Dilatometry: a powerful tool the study of defects in ultrafine-grained metals. J Mater Sci 47:7921–7925 10.1007/s10853-012-6460-9
Gupta RK, Birbilis N, Zhang J (2012) Oxidation resistance of nanocrystalline alloys. In: Shih M (ed) Corrosion resistance (Chap 10). InTech Europe, Croatia, pp 223–238
Gupta RK, Singh Raman RK, Koch CC (2010) Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy. J Mater Sci 45:4884–4888. doi:10.1007/s10853-010-4665-3
Rashidi AM (2011) Isothermal oxidation kinetics of nanocrystalline and coarse grained nickel: experimental results and theoretical approach. Surf Coat Technol 205:4117–4123
Mahesh BV, Singh Raman RK, Koch CC (2012) Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys. J Mater Sci 47:7735–7743. doi:10.1007/s10853-012-6686-6
Mahesh BV, Singh Raman RK, Scattergood RO, Koch CC (2013) Fe–Cr–Ni–Zr alloys with bi-modal grain size distribution: synthesis, mechanical properties and oxidation resistance. Mater Sci Eng A 574:235–242
Gupta RK, Singh Raman RK, Koch CC (2012) Electrochemical characteristics of nano and microcrystalline Fe–Cr alloys. J Mater Sci 47:6118–6124. doi:10.1007/s10853-012-6686-6
Mishra R, Balasubramaniam R (2004) Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corros Sci 46:3019–3029
Tao K, Zhou X, Cui H, Zhang J (2008) Preparation and properties of a nanostructured NiCrC alloy coating for boiler tubes protection. Mater Trans 49:2159–2162
Peng X (2010) Nanoscale assembly of high-temperature oxidation-resistant nanocomposites. Nanoscale 2:262–268
Zhang XY, Shi MH, Li C, Liu NF, Wei YM (2007) The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal. Mater Sci Eng A 448:259–263
Kang PC, Chen GQ, Zhang B, Wu GH, Mula S, Koch CC (2011) Oxidation protection of carbon fibers by a reaction sintered nanostructured SiC coating. Surf Coat Technol 206:305–311
Musil J (2012) Hard nanocomposites coatings: thermal stability, oxidation resistance and toughness. Surf Coat Technol 207:50–65
Xiang Y, Li W, Wang S, Zhang BF, Chen ZH (2013) ZrB2/SiC as a protective coating for C/SiC composites: effect of high temperature oxidation on mechanical properties and anti-ablation property. Compos B 45:1391–1396
Acknowledgements
The author thanks V.V. and S.V. Klyucharev for effective help in manuscript preparation. Financial support from the Russian Basic Research Foundation (Grant no 13-03-01014) as well as the RAS Branch of Chemistry and Science of Materials (Issue 2, Project no 13-043) is appreciated.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Andrievski, R.A. Review of thermal stability of nanomaterials. J Mater Sci 49, 1449–1460 (2014). https://doi.org/10.1007/s10853-013-7836-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-013-7836-1