Skip to main content
Log in

Review of thermal stability of nanomaterials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Current developments in kinetic and thermodynamic stabilization of grains in nanostructured metals, alloys, and compounds are generalized and discussed in detail. As applied to the thermodynamic approach, attention has recently shifted from using the regular solution approximation to estimating thermodynamic properties of nanomaterials by considering both inner regions of nanograins and their grain boundaries. This situation is discussed and examples for alloys based on iron, copper, tungsten, and other elements are presented. Experimental information about behavior of nanomaterials subjected to radiation or oxidation is considered, along with recent experiments on abnormal grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Andrievski RA (2003) Review: stability of nanostructured materials. J Mater Sci 38:1367–1874. doi:10.1023/A:1022988706296

    Article  CAS  ADS  Google Scholar 

  2. Koch CC, Ovid’ko IA, Seal S, Veprek S (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414. doi:10.1007/s10853-006-0609-3

    Article  CAS  ADS  Google Scholar 

  4. Gupta A, Sharma S, Jopshi MR, Agrawal P, Balani K (2010) Grain growth behavior of Al2O3 nanomaterials: a review. Mater Sci Forum 653:87–130

    Article  CAS  Google Scholar 

  5. Andrievski RA (2012) Fundamentals of nanostructured materials science. Possibilities and challenges. BINOM, Laboratory of knowledge, Moscow (in Russian)

    Google Scholar 

  6. Weertman JR (2012) Retaining the nano in nanocrystalline alloys. Science 327:921–922

    Article  ADS  Google Scholar 

  7. Castro RHR (2013) On the thermodynamic stability of nanocrystalline ceramics. Mater Lett 96:45–56

    Article  CAS  Google Scholar 

  8. Upmanyu M, Srolovitz DJ, Lobkovsky AE, Warren JA, Carter WC (2006) Simultaneous grain boundary migration and grain rotation. Acta Mater 54:1707–1715

    Article  CAS  Google Scholar 

  9. Bernstein N (2008) The influence of geometry on grain boundary motion and rotation. Acta Mater 56:1106–1113

    Article  CAS  Google Scholar 

  10. Zizak I, Darowski N, Klaumünzer S, Schumacher G, Gerlach JW (2009) Grain rotation in nanocrystalline layers under influence of swift heavy ions. Nucl Instr Meth Phys Res B 267:944–948

    Article  CAS  ADS  Google Scholar 

  11. Chaim R (2012) Groan coalescence by grain rotation in nanoceramics. Scr Mater 66:269–271

    Article  CAS  Google Scholar 

  12. Novikov VY (2010) On grain growth in the presence of mobile particles. Acta Mater 58:3321–3326

    Google Scholar 

  13. Novikov VYu (2012) Microstructure evolution during grain growth in materials with disperse particles. Mater Lett 68:413–415

    Article  CAS  Google Scholar 

  14. Gottstein G, Shvindlerman LS (2005) A novel concept to determine the mobility of grain boundary quadruple Junctions. Scr Mater 52:863–866

    Article  CAS  Google Scholar 

  15. Novikov VYu (2008) Impact of grain boundary junctions on grain growth in polycrystals with different grain sizes. Mater Lett 62:2067–2069

    Article  Google Scholar 

  16. Zhao B, Gottstein G, Shvindlerman LS (2011) Triple junction effects in solids. Acta Mater 59:3510–3518

    Article  CAS  Google Scholar 

  17. Klinger L, Rabkin E, Shvindlerman LS, Gottstein G (2008) Grain growth in porous two-dimensional nanocristalline materials. J Mater Sci 43:5068–5075. doi:10.1007/s10853-008-2678-y

    Article  CAS  ADS  Google Scholar 

  18. Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112. doi:10.1103/PhysRevB.79.094112

    Article  ADS  Google Scholar 

  19. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954

    Article  PubMed  CAS  ADS  Google Scholar 

  20. Murdoch HA, Schuh CA (2013) Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater 61:2121–2132

    Article  CAS  Google Scholar 

  21. Saber M, Kotan H, Koch CC, Scattergood RO (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113:063515. doi:10.1063/1.4791704

    Article  ADS  Google Scholar 

  22. Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Thermal stability of nanocrystalline Fe–Zr alloys. Mater Sci Eng A 527:3572–3580

    Article  Google Scholar 

  23. Xu WW, Song XY, Li ED, Wei J, Zhang JX (2009) Thermodynamic study on phase stability in nanocrystalline Sm–Co alloy system. J Appl Phys 105:104310. doi:10.1063/1.3129502

    Article  ADS  Google Scholar 

  24. Xu W, Song X, Lu N, Huang Ch (2010) Thermodynamic and experimental study on phase stability in nanocrystalline alloys. Acta Mater 58:396–407

    Article  CAS  Google Scholar 

  25. Xu W, Seng X, Zhang Z (2010) Thermodynamic study on metastable phase: from polycrystalline to nanocrystalline system. Appl Phys Lett 97:181911. doi:10.1063/1.3509407

    Article  ADS  Google Scholar 

  26. Gartner F, Bormann R, Birringer R, Tschöpe A (1996) Thermodynamic stability of nanocrystalline palladium. Scr Mater 35:805–810

    Article  Google Scholar 

  27. Xu W, Song X, Lu N, Seyring M, Rettenmayr M (2009) Nanoscale thermodynamic study on phase transformation in the nanocrystalline Sm2Co17 alloy. Nanoscale 1:238–244

    Article  PubMed  CAS  ADS  Google Scholar 

  28. Xu W, Song X, Zhang ZX (2012) Multiphase equilibrium, phase stability and phase transformation in nanocrystalline alloy systems. Nano Brief Rep Rev 7:125012. doi:10.1142/S1793292012500129

    Google Scholar 

  29. Zhang RF, Veprek S (2008) Phase stability of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1−x Si x N y solid solution studied by ab initio calculation and thermodynamic modeling. Thin Solid Films 516:2264–2275

    Article  CAS  ADS  Google Scholar 

  30. Sheng SH, Zhang RF, Veprek S (2011) Phase stabilities and decomposition mechanism in the Zr–Si–N system studied by combined ab initio DFT and thermodynamic calculation. Acta Mater 59:297–307

    Article  CAS  Google Scholar 

  31. Sheng SH, Zhang RF, Veprek S (2011) Study of spinodal decomposition and formation of nc-Al2O3/ZrO2 nanocomposites by combined ab initio density functional theory and thermodynamic modeling. Acta Mater 59:3498–3509

    Article  CAS  Google Scholar 

  32. Ivashchenko VI, Veprek S, Turchi PEA, Shevchenko VI (2012) Comparative first-principles study of TiN/SiN x /TiN interfaces. Phys Rev B 85:195403. doi:10.1103/PhysRevB.85.195403

    Article  ADS  Google Scholar 

  33. Ivashchenko VI, Veprek S, Turchi PEA, Shevchenko VI (2012) First-principles study of TiN/SiC/TiN Interfaces in superhard nanocomposites. Phys Rev B 86:014110. doi:10.1103/PhysRevB.86.014110

    Article  ADS  Google Scholar 

  34. Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371

    Article  Google Scholar 

  35. Atwater MA, Scattergood RO, Koch CC (2013) The stabilization of nanocrystalline copper by zirconium. Mater Sci Eng A 559:250–256

    Article  CAS  Google Scholar 

  36. Detor AJ, Schuh CA (2007) Tailoring and pattering the grain size of nanocrystalline alloys. Acta Mater 55:371–379

    Article  CAS  Google Scholar 

  37. Detor AJ, Schuh CA (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulation in the Ni–W system. Acta Mater 55:4221–4232

    Article  CAS  Google Scholar 

  38. Detor AJ, Schuh CA (2007) Microstructural evolution during the heat treatment of nanocrystalline alloys. J Mater Res 22:3233–3248

    Article  CAS  ADS  Google Scholar 

  39. Koch CC, Scattergood RO, Saber M, Kotan H (2013) High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies. J Mater Res 28:1785–1791

    Article  CAS  ADS  Google Scholar 

  40. Atwater MA, Roy D, Darling KA, Butler BG, Scattergood RO, Koch CC (2012) The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater Sci Eng A 558:226–233

    Article  CAS  Google Scholar 

  41. Darling KA, Roberts AJ, Mishin Y, Mathaudhu SN, Kecskes LJ (2013) Grain size stabilization of nanocrystalline copper at high temperature by alloying with tantalum. J Alloy Compd 573:142–150

    Article  CAS  Google Scholar 

  42. Frolov T, Darling KA, Kecskes LJ, Mishin Y (2012) Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Mater 60:2158–2168

    Article  CAS  Google Scholar 

  43. Özerinç S, Tai K, Vo NQ, Bellon P, Averback RS, King WP (2012) Grain boundary doping strengthens nanocrystalline copper alloys. Scr Mater 67:720–723

    Article  Google Scholar 

  44. Koch CC, Scattergood RO, VanLeeuwen BK, Darling KA (2012) Thermodynamic stabilization of grain size in nanocrystalline metals. Mater Sci For 715–716:323–328

    Google Scholar 

  45. Darling KA, Kecskes LJ, Atwater M, Semones J, Scattergood RO, Koch CC (2013) Thermal stability of nanocrystalline nickel with yttrium additions. J Mater Res 28:1813–1819

    Article  CAS  ADS  Google Scholar 

  46. McClintock DA, Sokolov MA, Hoelzer DT, Nanstad RK (2009) Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater 392:353–359

    Article  CAS  ADS  Google Scholar 

  47. Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Ann Rev Mater Res 38:471–503

    Article  CAS  ADS  Google Scholar 

  48. Andrievski RA (2011) Behavior of radiation defects in nanomaterials. Rev Adv Mater Sci 29:54–67

    CAS  Google Scholar 

  49. Dubuisson P, de Carlan Y, Garat V, Blat M (2012) ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J Nucl Mater 428:6–12

    Article  CAS  ADS  Google Scholar 

  50. Wang XL, Liu CT, Keiderling U, Stoica AD, Yang L, Miller MK, Fu CL, Ma D, An K (2012) Unusual thermal stability of nano-structured ferritic alloys. J Alloy Compd 529:96–101

    Article  CAS  Google Scholar 

  51. Etienne A, Radiguet B, Cunningham NJ, Odette GR, Valiev R, Pareige P (2011) Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels. Ultramicroscopy 111:659–663

    Article  PubMed  CAS  Google Scholar 

  52. Miller MK, Hoelzer DT (2011) Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys. J Nucl Mater 418:307–310

    Article  CAS  ADS  Google Scholar 

  53. Lescoat M-L, Monnet I, Ribis J, Dubuisson P, de Carlan Y, Costantini J-M, Malaplate J (2011) Amorphization of oxides in ODS materials under low and high energy ion irradiations. J Nucl Mater 417:266–269

    Article  CAS  ADS  Google Scholar 

  54. Lescoat M-L, Ribis J, Gentils A, Kaïtasov O, de Carlan Y, Legris A (2012) In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J Nucl Mater 428:176–182

    Article  CAS  ADS  Google Scholar 

  55. Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer DT, Allen TR (2013) Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J Nucl Mater 434:311–321

    Article  CAS  ADS  Google Scholar 

  56. Miao P, Odette GR, Yamamoto T, Alinger M, Kligensmith D (2008) Thermal stability of nano-structured ferritic alloy. J Nucl Mater 377:59–64

    Article  CAS  ADS  Google Scholar 

  57. Mao X, Kim TK, Kim SS, Oh KH, Jang J (2012) Thermal stability of oxide particles in 12Cr ODS steel. J Nucl Mater 428:82–89

    Article  CAS  ADS  Google Scholar 

  58. He P, Klimenkov M, Lindau R, Möslang A (2012) Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application. J Nucl Mater 428:131–138

    Article  CAS  ADS  Google Scholar 

  59. Zhong SY, Ribis J, Klosek V, de Carlan Y, Lochet N, Ji V, Mathon MH (2012) Study of the thermal stability of nanoparticles distributions in an oxide dispersion strengthened (ODS) ferritic alloys. J Nucl Mater 428:154–159

    Article  CAS  ADS  Google Scholar 

  60. Hirata A, Fujita T, Liu CT, Chen MW (2012) Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Mater 60:5686–5696

    Article  CAS  Google Scholar 

  61. Fu CL, Krčmar M, Painter GS, Chen X-Q (2007) Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys Rev Lett 99:225502. doi:10.1103/PhysRevLett.99.225502

    Article  PubMed  CAS  ADS  Google Scholar 

  62. Jenei P, Gubicza J, Yoon EY, Kim HS, Labar JL (2013) High temperature thermal stability of pure coppercarbon nanotubes composites consolidated by high pressure torsion. Compos A 51:71–79

    Article  CAS  Google Scholar 

  63. Hegedüs Z, Gubicza J, Kawasaki M, Chinh NQ, Lábár JL, Langdon TG (2013) Stability of the ultrafinegrained microstructure in silver by ECAP and HPT. J Mater Sci 48:4637–4645. doi:10.1007/s10853-012-7124-5

    Article  ADS  Google Scholar 

  64. Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W, Mara NA (2013) High-strength and thermally stable bulk nanolayered composites due twin-induced interfaces. Nature Comm 4:1696. doi:10.1038/ncomms2651

    Article  ADS  Google Scholar 

  65. Shen YF, Lu L, Lu QH, Jin ZH, Lu K (2005) Tensile properties of copper with nano-scale twins. Scr Mater 52:989–994

    Article  CAS  ADS  Google Scholar 

  66. Anderoglu O, Misra A, Wang H, Zhang X (2008) Thermal stability of sputtered Cu films with nanoscale growth twins. J Appl Phys 103:094322. doi:10.1063/1.2913322

    Article  ADS  Google Scholar 

  67. Chen Y, Liu Y, Khatkhatay F, Sun C, Wang H, Zhang X (2012) Significant enhancement in the thermal stability of nanocrystalline metals via immiscible tri-phases. Scr Mater 67:177–180

    Article  CAS  Google Scholar 

  68. Zhang X, Wen J, Bellon P, Averback RS (2013) Irradiation-induced selective precipitation in Cu–Nb–W alloys: an approach towards coarsening resistance. Acta Mater 61:2004–2015

    Article  CAS  Google Scholar 

  69. Chokshi AH (2008) Triple junction limited grain growth in nanomaterials. Scr Mater 59:726–729

    Article  CAS  Google Scholar 

  70. Novikov V (1996) Grain growth and control of microstructure and texture in polycrystalline materials. CRC Press, Boca Raton

    Google Scholar 

  71. Gottstein G, Shvindlerman LS (2010) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press, Boca Raton

    Google Scholar 

  72. Gottstein G, Shvindlerman LS, Zhao B (2010) Thermodynamics and kinetics of grain boundary triple junctions in metals: recent developments. Scr Mater 62:914–917

    Article  CAS  Google Scholar 

  73. Ames M, Markmann J, Karos R, Michels A, Tschöpe A, Birringer R (2008) Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater 56:4255–4266

    Article  CAS  Google Scholar 

  74. Konkova T, Mironov S, Korznikov A, Semiatin SL (2010) Microstructure instability in cryogenically deformed copper. Scr Mater 63:921–924

    Article  CAS  Google Scholar 

  75. Cheng L, Hibbard GD (2008) Abnormal grain growth via migration of planar growth interfaces. Mater Sci Eng A 492:128–133

    Article  Google Scholar 

  76. Hattar K, Follstaedt DM, Knapp JA, Robertson IM (2008) Defect structures created during ab normal grain growth in pulsed-laser deposited nickel. Acta Mater 56:794–801

    Article  CAS  Google Scholar 

  77. Kacher J, Robertson IM, Nowell M, Knapp J, Hattar K (2011) Study of rapid grain boundary migration in a nanocrystallin Ni thin film. Mater Sci Eng A 528:1628–1635

    Article  Google Scholar 

  78. Paul H, Krill CE III (2011) Abnormally linear grain growth in nanocrystalline Fe. Scr Mater 65:5–8

    Article  CAS  Google Scholar 

  79. Kotan H, Darling KA, Saber M, Scattergood RO, Koch CC (2013) An in situ experimental study of grain growth in a nanocrystalline Fe91Ni6Zr1 alloy. J Mater Sci 48:2251–2257. doi:10.1007/s10853-012-7002-1

    Article  CAS  ADS  Google Scholar 

  80. Mannesson K, Jeppsson J, Borgenstam A, Ågren J (2011) Carbide grain growth in cemented carbides. Acta Mater 59:1912–1923

    Article  CAS  Google Scholar 

  81. McKie A, Herrmann M, Sigalas I, Sempf K, Nilen R (2013) Suppression of abnormal grain growth in fine grained polycrystalline diamond materials (PCD). Int J Refract Met Hard Mater 41:66–72

    Article  CAS  Google Scholar 

  82. Novikov VY (2011) On abnormal grain growth in nanocrystalline materials induced by small particles. Int J Mater Res 4:446–451

    Article  Google Scholar 

  83. Novikov VY (2011) Abnormal grain growth in thin films not caused by decreased energy of their free surface. Mater Lett 65:2618–2620

    Article  CAS  Google Scholar 

  84. Novikov VY (2012) Grain Growth and disperse particles: impact of triple junctions. Mater Lett 84:136–138

    Article  CAS  Google Scholar 

  85. Novikov VY (2013) Grain growth suppression in nanocrystalline materials. Mater Lett 100:271–273

    Article  CAS  Google Scholar 

  86. Sprengel W, Oberdorfer B, Steyskal E-M, Würschum R (2012) Dilatometry: a powerful tool the study of defects in ultrafine-grained metals. J Mater Sci 47:7921–7925 10.1007/s10853-012-6460-9

    Article  CAS  ADS  Google Scholar 

  87. Gupta RK, Birbilis N, Zhang J (2012) Oxidation resistance of nanocrystalline alloys. In: Shih M (ed) Corrosion resistance (Chap 10). InTech Europe, Croatia, pp 223–238

    Google Scholar 

  88. Gupta RK, Singh Raman RK, Koch CC (2010) Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy. J Mater Sci 45:4884–4888. doi:10.1007/s10853-010-4665-3

    Article  CAS  ADS  Google Scholar 

  89. Rashidi AM (2011) Isothermal oxidation kinetics of nanocrystalline and coarse grained nickel: experimental results and theoretical approach. Surf Coat Technol 205:4117–4123

    Article  CAS  Google Scholar 

  90. Mahesh BV, Singh Raman RK, Koch CC (2012) Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys. J Mater Sci 47:7735–7743. doi:10.1007/s10853-012-6686-6

    Article  CAS  ADS  Google Scholar 

  91. Mahesh BV, Singh Raman RK, Scattergood RO, Koch CC (2013) Fe–Cr–Ni–Zr alloys with bi-modal grain size distribution: synthesis, mechanical properties and oxidation resistance. Mater Sci Eng A 574:235–242

    Article  CAS  Google Scholar 

  92. Gupta RK, Singh Raman RK, Koch CC (2012) Electrochemical characteristics of nano and microcrystalline Fe–Cr alloys. J Mater Sci 47:6118–6124. doi:10.1007/s10853-012-6686-6

    Article  CAS  ADS  Google Scholar 

  93. Mishra R, Balasubramaniam R (2004) Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corros Sci 46:3019–3029

    Article  CAS  Google Scholar 

  94. Tao K, Zhou X, Cui H, Zhang J (2008) Preparation and properties of a nanostructured NiCrC alloy coating for boiler tubes protection. Mater Trans 49:2159–2162

    Article  CAS  Google Scholar 

  95. Peng X (2010) Nanoscale assembly of high-temperature oxidation-resistant nanocomposites. Nanoscale 2:262–268

    Article  PubMed  CAS  ADS  Google Scholar 

  96. Zhang XY, Shi MH, Li C, Liu NF, Wei YM (2007) The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal. Mater Sci Eng A 448:259–263

    Article  Google Scholar 

  97. Kang PC, Chen GQ, Zhang B, Wu GH, Mula S, Koch CC (2011) Oxidation protection of carbon fibers by a reaction sintered nanostructured SiC coating. Surf Coat Technol 206:305–311

    Article  CAS  Google Scholar 

  98. Musil J (2012) Hard nanocomposites coatings: thermal stability, oxidation resistance and toughness. Surf Coat Technol 207:50–65

    Article  MathSciNet  Google Scholar 

  99. Xiang Y, Li W, Wang S, Zhang BF, Chen ZH (2013) ZrB2/SiC as a protective coating for C/SiC composites: effect of high temperature oxidation on mechanical properties and anti-ablation property. Compos B 45:1391–1396

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks V.V. and S.V. Klyucharev for effective help in manuscript preparation. Financial support from the Russian Basic Research Foundation (Grant no 13-03-01014) as well as the RAS Branch of Chemistry and Science of Materials (Issue 2, Project no 13-043) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Andrievski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrievski, R.A. Review of thermal stability of nanomaterials. J Mater Sci 49, 1449–1460 (2014). https://doi.org/10.1007/s10853-013-7836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7836-1

Keywords

Navigation