Skip to main content
Log in

Atomic layer deposition of Zn1−x Mg x O:Al transparent conducting films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum-doped zinc magnesium oxide (Zn1−x Mg x O:Al) films with the Mg content from x = 0 to 0.48 were obtained using atomic layer deposition (ALD). Together with the thorough studies of the properties of the deposited films, the ALD growth parameters conditioning possible applications of Zn1−x Mg x O:Al films as transparent electrodes are investigated. Very low film resistivities (≤~10−3 Ω cm) and the metallic-type conductivity behavior at room temperature for Zn1−x Mg x O:Al films are observed for Mg content x < 0.19. The Mg content of x = 0.19 results in the optical absorption edge of Zn1−x Mg x O:Al films at 3.81 eV (325 nm). Other film parameters like work function or sheet resistance can be easily modified by variation of growth parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chao T-C, Lin Y-T, Yang C-Y, Hung TS, Chou H-C, Wu C-C, Wong K-T (2005) Highly efficient UV organic light-emitting devices based on Bi(9,9-diarylfluorene)s. Adv Mater 17:992–996

    Article  CAS  Google Scholar 

  2. Ichikawa M, Kobayashi K, Koyama T, Taniguchi Y (2007) Intense and efficient ultraviolet electroluminescence from organic light-emitting devices with fluorinated copper phthalocyanine as hole injection layer. Thin Solid Films 515:3932–3935

    Article  CAS  ADS  Google Scholar 

  3. Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafafi ZH, Chrisey DB (1999) Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J Appl Phys 86:6451–6461

    Article  CAS  ADS  Google Scholar 

  4. Ellmer K, Klein A, Rech B (eds) (2008) Transparent conductive zinc oxide. Springer, Heidelberg

    Google Scholar 

  5. Lu JG, Ye ZZ, Zeng YJ, Zhu LP, Wang L, Yuan J, Zhao BH, Liang QL (2006) Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions. J Appl Phys 100:073714-1–073714-11

    ADS  Google Scholar 

  6. Cohen DJ, Ruthe KC, Barnett SA (2004) Transparent conducting Zn1−xMgxO:(Al, In) thin films. J Appl Phys 96:459–467

    Article  CAS  ADS  Google Scholar 

  7. Ellmer K, Vollweiler G (2006) Electrical transport parameters of heavily-doped zinc oxide and zinc magnesium oxide single and multilayer films heteroepitaxially grown on oxide single crystals. Thin Solid Films 496:104–111

    Article  CAS  ADS  Google Scholar 

  8. Matsubara K, Tampo H, Shibata H, Yamada A, Fons P, Iwata K, Niki S (2004) Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition. Appl Phys Lett 85:1374–1376

    Article  CAS  ADS  Google Scholar 

  9. Lu JG, Fujita S (2006) Carrier concentration induced band-gap shift in Al-doped Zn1−xMgxO thin films. Appl Phys Lett 89:262107-1–262107-3

    ADS  Google Scholar 

  10. Luka G, Godlewski M, Guziewicz E, Stakhira P, Cherpak V, Volynyuk D (2012) ZnO films grown by atomic layer deposition for organic electronics. Semicond Sci Technol 27(074006):1–7

    Google Scholar 

  11. Luka G, Volyniuk D, Tomkeviciene A, Simokaitiene J, Grazulevicius JV, Stakhira P, Cherpak V, Sybilski P, Witkowski BS, Godlewski M, Guziewicz E, Hotra Z, Hotra O (2013) Carbazole derivative based near ultraviolet organic light emitting diode with ZnMgO:Al anode layer. Solid State Phenomena 200:45–49

    Article  Google Scholar 

  12. Martin PM (2010) Handbook of deposition technologies for films and coatings. Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo

    Google Scholar 

  13. Levy DH, Nelson ShF, Freeman D (2009) Oxide Electronics by Spatial Atomic Layer Deposition. J Disp Technol 5:484–494

    Article  CAS  Google Scholar 

  14. Luka G, Krajewski TA, Witkowski BS, Wisz G, Virt IS, Guziewicz E, Godlewski M (2011) Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications. J Mater Sci 22:1810–1815

    CAS  Google Scholar 

  15. Jablonski A (2000) Quantitative surface analysis by X-ray photoelectron spectroscopy. Pol J Chem 74:1533–1564

    CAS  Google Scholar 

  16. Jablonski A (2010) Determination of surface composition by X-ray photoelectron spectroscopy taking into account elastic photoelectron collisions. Anal Sci 26:155–164

    Article  PubMed  CAS  Google Scholar 

  17. Luka G, Wachnicki L, Witkowski BS, Krajewski TA, Jakiela R, Guziewicz E, Godlewski M (2011) The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition. Mater Sci Eng B 176:237–241

    Article  CAS  Google Scholar 

  18. Karzel H, Potzel U, Potzel W, Moser J, Schaefer C, Steiner M, Peter M, Kratzer A, Kalvius GM (1991) X-ray diffractometer for high pressure and low temperatures. Mater Sci Forum 79–82:419–426

    Article  Google Scholar 

  19. Luka G, Krajewski T, Wachnicki L, Witkowski B, Lusakowska E, Paszkowicz W, Guziewicz E, Godlewski M (2010) Transparent and conductive undoped zinc oxide thin films grown by atomic layer deposition. Phys Status Solidi A 207:1568–1571

    Article  CAS  ADS  Google Scholar 

  20. Okuhara Y, Matsubara H, Takata M (2011) Near-infrared reflection from Al-doped ZnO films prepared by multi-target reactive sputtering. IOP Conf Ser 18:092018-1–092018-4

    Google Scholar 

  21. Jin ZC, Hamberg I, Granqvist CG (1988) Optical properties of sputter-deposited ZnO:Al thin films. J Appl Phys 64:5117–5131

    Article  CAS  ADS  Google Scholar 

  22. Hayamizu S, Tabata H, Tanaka H, Kawai T (1996) Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. J Appl Phys 80:787–791

    Article  CAS  ADS  Google Scholar 

  23. Venkata Rao G, Säuberlich F, Klein A (2005) Influence of Mg content on the band alignment at CdS/(Zn, Mg)O interfaces. Appl Phys Lett 87:032101-1–032101-3

    ADS  Google Scholar 

  24. Park S-M, Ikegami T, Ebihara K (2006) Growth of transparent conductive Al-doped ZnO thin films and device applications. Jpn J Appl Phys 45:8453–8456

    Article  CAS  ADS  Google Scholar 

  25. Schlaf R, Murata H, Kafafi ZH (2001) Work function measurements on indium tin oxide films. J Electron Spectrosc Relat Phenomen 120:149–154

    Article  CAS  Google Scholar 

  26. Saarenpaa H, Niemi T, Tukiainen A, Lemmetyinen H, Tkachenko N (2010) Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Sol Energy Mater Sol Cell 94:1379–1383

    Article  Google Scholar 

Download references

Acknowledgements

The work was financed by the European Union within the European Regional Development Fund, through the Innovative Economy Grant (POIG.01.01.02-00-108/09), by the National Science Centre (NCN) of Poland (Decision No. DEC-2012/06/A/ST7/00398) by the National Laboratory of Quantum Technologies (POIG.02.02.00-00-003/08-00) and by NCN Project DEC-2011/01/B/ST4/00959.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Luka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luka, G., Witkowski, B.S., Wachnicki, L. et al. Atomic layer deposition of Zn1−x Mg x O:Al transparent conducting films. J Mater Sci 49, 1512–1518 (2014). https://doi.org/10.1007/s10853-013-7832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7832-5

Keywords

Navigation