Skip to main content
Log in

Iron(III) porphyrin anchored onto organosilylated multiwalled carbon nanotubes as an active catalyst for epoxidation reactions under mild conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The immobilization of an efficient iron(III) porphyrin catalyst onto multiwalled carbon nanotubes (MWCNT) is reported through a quaternization reaction between the dimethylamine-tetrafluorophenyl groups of the metalloporphyrin and the bromoalkyl moieties attached on the nanotubes surface. Prefunctionalization of MWCNT considered its direct reaction with 4-hydroxyaniline to introduce hydroxyphenyl groups on the nanotube sidewalls, followed by silylation with a bromoalkylorganosilane. The preparation of the catalysts was performed in conventional and microwave heating, and the obtained materials were characterized by XPS, TGA, FTIR, and XRD. Although the two procedures led to similar functionalization degree, the microwave-assisted synthesis allowed the anchoring reaction to be performed in 1 h, reducing significantly the reaction time relatively to conventional heating. For both materials, the catalyst loading was 76 μmol g−1 based on the iron content obtained by XPS. The materials were tested as recyclable catalysts in the epoxidation of cis-cyclooctene by hydrogen peroxide as a green oxidant at room temperature, and in ethanol as a cheap and environmental compatible solvent with no need of other additives. A 95 % conversion and 100 % selectivity towards the epoxide were obtained after 5 h of reaction time, and the reutilization of the catalysts, upon three cycles, was more efficient when the rate of H2O2 addition was 0.5 molar equivalents h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anastas PT, Zimmerman JB (2013) Innovations in green chemistry and green engineering. Springer, New York

    Book  Google Scholar 

  2. Kadish KM, Smith KM, Guilard R (2000) The porphyrin handbook, vol 4. Academic Press, San Diego

    Google Scholar 

  3. Pires SMG, Simoes MMQ, Santos ICMS, Rebelo SLH, Pereira MM, Neves MGPMS, Cavaleiro JAS (2012) Biomimetic oxidation of organosulfur compounds with hydrogen peroxide catalyzed by manganese porphyrins. Appl Catal A 439–440:51–56

    Article  Google Scholar 

  4. Costa P, Linhares M, Rebelo SLH, Neves MGPMS, Freire C (2013) Direct access to polycyclic peripheral diepoxy-mesoquinone derivatives from acene catalytic oxidation. RSC Adv 3:5350–5353

    Article  CAS  Google Scholar 

  5. Rebelo SLH, Pereira MM, Simões MMQ, Neves MGPMS, Cavaleiro JAS (2005) Mechanistic studies on metalloporphyrin epoxidation reactions with hydrogen peroxide: evidence of two active species. J Catal 234:76–87

    Article  CAS  Google Scholar 

  6. Dolphin D, Traylor TG, Xie LY (1997) Polyhaloporphyrins: unusual ligands for metals and metal-catalyzed oxidations. Acc Chem Res 30:251–259

    Article  CAS  Google Scholar 

  7. Rebelo SLH, Simões MMQ, Neves MGPMS, Silva AMS, Cavaleiro JAS (2004) An efficient approach for aromatic epoxidation using hydrogen peroxide and Mn(III) porphyrins. Chem Commun 5:608–609

    Article  Google Scholar 

  8. Fujii H (2002) Electronic structure and reactivity of high-valent oxo iron porphyrins. Coord Chem Rev 226:51–60

    Article  CAS  Google Scholar 

  9. Bedioui F (1995) Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview. Coord Chem Rev 144:39–68

    Article  CAS  Google Scholar 

  10. Nakagaki S, Wypych F (2007) Nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. J Colloid Interface Sci 315:142–157

    Article  PubMed  CAS  Google Scholar 

  11. Adam F, Ooi WT (2012) Selective oxidation of benzyl alcohol to benzaldehyde over Co-metalloporphyrin supported on silica nanoparticles. Appl Catal A 445–446:252–260

    Article  Google Scholar 

  12. Machado GS, de Lima OJ, Ciuffi KJ, Wypych F, Nakagaki S (2013) Iron(III) porphyrin supported on metahalloysite: an efficient and reusable catalyst for oxidation reaction. Catal Sci Technol 3:1094–1101

    Article  CAS  Google Scholar 

  13. Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene−porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134:6707–6713

    Article  PubMed  CAS  Google Scholar 

  14. Saeedi MS, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour AR (2013) Magnetic nanoparticles supported manganese(III) tetrapyridylporphyrin catalyst via covalent interaction: a highly efficient and reusable catalyst for the oxidation of hydrocarbons. Polyhedron 49:158–166

    Article  CAS  Google Scholar 

  15. Gaspar H, Andrade M, Pereira C, Pereira AM, Rebelo SLH, Araujo JP, Pires J, Carvalho A, Freire C (2013) Alkene epoxidation by manganese(III) complexes immobilized onto nanostructured carbon CMK-3. Catal Today 203:103–110

    Article  CAS  Google Scholar 

  16. Cao R, Thapa R, Kim H, Xu X, Gyu Kim M, Li Q, Park N, Liu M, Cho J (2013) Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun 4:2076

    PubMed  ADS  Google Scholar 

  17. Schaetz A, Zeltner M, Stark WJ (2012) Carbon modifications and surfaces for catalytic organic transformation. ACS Catal 2:1267–1284

    Article  CAS  Google Scholar 

  18. Müller A (2004) The chemistry of nanomaterials: synthesis, properties and application. Wiley-VCH, Weinheim

    Google Scholar 

  19. Arai T, Nobukuni S, Sandanayaka ASD, Ito O (2009) Zinc porphyrins covalently bound to the side walls of single-walled carbon nanotubes via flexible bonds: photoinduced electron transfer in polar solvent. J Phys Chem C 113:14493–14499

    Article  CAS  Google Scholar 

  20. Freire C, Silva AR (2009) Carbon-anchored metal complex catalysts. In: Serp P, Figueiredo JL (eds) Carbon materials of catalysis.Wiley, Hoboken, pp 267–308

    Google Scholar 

  21. Jia F, Wu L, Meng J, Yang M, Kong H, Liu T, Xu H (2009) Preparation, characterization and fluorescent imaging of multi-walled carbon nanotube–porphyrin conjugate. J Mater Chem 19:8950–8957

    Article  CAS  Google Scholar 

  22. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230

    Article  PubMed  CAS  Google Scholar 

  23. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159

    Article  CAS  Google Scholar 

  24. Lipińska ME, Rebelo SLH, Pereira MFR, Gomes JANF, Freire C, Figueiredo JL (2012) New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 50:3280–3294

    Article  Google Scholar 

  25. Gaspar H, Pereira C, Rebelo SLH, Pereira MFR, Figueiredo JL, Freire C (2011) Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon 49:3441–3453

    Article  CAS  Google Scholar 

  26. Rayati S, Jafarzadeh P, Zakavi S (2013) Catalytic activity of carbon nanotube supported iron(III) and manganese(III) porphyrins in oxidation of olefins with tert-butyl hydroperoxide: Higher activity of the iron(III) porphyrin. Inorg Chem Commun 2:40–44

    Article  Google Scholar 

  27. Araghi M, Bokaei F (2013) Manganese(III) porphyrin supported on multi-wall carbon nanotubes: a highly efficient and reusable biomimetic catalyst for oxidative decarboxylation of a-arylcarboxylic acids and oxidation of alkanes with sodium periodate. Polyhedron 53:15–19

    Article  CAS  Google Scholar 

  28. Bolzon LB, Airoldi HR, Zanardi FB, Granado JG, Iamamoto Y (2013) Metalloporphyrin-functionalized hexagonal mesoporous silica: synthesis, structural properties and catalytic activity as cytochrome P450 model. Microporous Mesoporous Mater 168:37–45

    Article  CAS  Google Scholar 

  29. Rebelo SLH, Simoes MMQ, Neves MGPMS, Silva AMS, Cavaleiro JAS, Peixoto AF, Pereira MM, Silva MR, Paixão JA, Beja AM (2004) Oxidation of delta(4)- and delta(5)-steroids with hydrogen peroxide catalyzed by porphyrin complexes of Mn-III and Fe-III. Eur J Org Chem 4778–4787

  30. Karthikeyan K, Amaresh S, Aravindan V, Lee YS (2013) Microwave assisted green synthesis of MgO–carbon nanotube composites as electrode material for high power and energy density supercapacitors. J Mater Chem A 1:4105–4111

    Article  CAS  Google Scholar 

  31. Silva AR, Budarin V, Clark JH (2013) Microwave-assisted immobilization of manganese salen complexes: increased activity and chemoselectivity in catalytic epoxidation. ChemCatChem 5:895–898

    Article  CAS  Google Scholar 

  32. Rubio N, Herrero A, Meneghetti M, Diaz-Ortiz A, Schiavon M, Prato M, Vásquez E (2009) Efficient functionalization of carbon nanohorns via microwave irradiation. J Mater Chem 19:4407–4413

    Article  CAS  Google Scholar 

  33. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  34. Johnstone RAW, Nunes MLPG, Pereira MM, Gonsalves AMAR, Serra AC (1996) Improved synthesis of 5,10,15,20-tetrakisaryl- and tetrakis-alkylporphyrins. Heterocycles 43:1423–1437

    Article  CAS  Google Scholar 

  35. Adler AD, Longo FR, Kampas F, Kim J (1970) On preparation of metalloporphyrins. J Inorg Nucl Chem 32:2443–2449

    Article  CAS  Google Scholar 

  36. Kundu S, Wang Y, Xia W, Muhler M (2008) Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR. J Phys Chem C 112:16869–16878

    Article  CAS  Google Scholar 

  37. Wagner CD, Moulder JF, Davis LE, Riggs WM (1973) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  38. Bui LN, Thompson M, McKeown NB, Romaschin AD, Kalman PG (1993) Surface modification of the biomedical polymer poly(ethylene terephthalate). Analyst 118:463–474

    Article  PubMed  CAS  ADS  Google Scholar 

  39. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  ADS  Google Scholar 

  40. Dorbes S, Pereira C, Andrade M, Barros D, Pereira AM, Rebelo SLH, Araújo JP, Pires J, Carvalho AP, Freire C (2012) Oxidovanadium(IV) acetylacetonate immobilized onto CMK-3 for heterogeneous epoxidation of geraniol. Microporous Mesoporous Mater 160:67–74

    Article  CAS  Google Scholar 

  41. Lipińska ME, Rebelo SLH, Pereira MFR, Figueiredo JL, Freire C (2013) Novel photoactive nanohybrids through covalent β-linkages of a Zn(II)porphyrin to multi walled carbon nanotubes. Mater Chem Phys 143:296–304

    Google Scholar 

  42. Socrates G (1995) Infrared and Raman characteristic group frequencies. Tables and charts, 3rd edn. Wiley, Chichester

    Google Scholar 

  43. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118

    Article  Google Scholar 

  44. Paul S, Amalraj F, Radhakrishnan S (2009) CO sensor based on polypyrrole functionalized with iron porphyrin. Synth Met 159:1019–1023

    Article  CAS  Google Scholar 

  45. Wang A, Long L, Zhao W, Song Y, Humphrey MG, Cifuentes MP, Wu X, Fu Y, Zhang D, Li X, Zhang C (2013) Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 53:327–338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Fundação para a Ciência e a Tecnológia (FCT) and FEDER through grant nr. PEst-C/EQB/LA0006/2011 and NORTE-07-0124-FEDER-000067–Nanochemistry. Monika E. Lipińska also thanks FCT for a PhD grant SFRH/BD/66297/2009. Authors thank Prof. José L. Figueiredo and Prof. M. Fernando R. Pereira from LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Portugal, for providing the access to the TGA, Dr. Marisa Almeida for AAS analysis, and Prof Pedro Tavares from CQ-VR, Universidade de Trás-os-Montes e Alto Douro, Portugal, for providing the powder X-ray difractograms.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susana L. H. Rebelo or Cristina Freire.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 517 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipińska, M.E., Rebelo, S.L.H. & Freire, C. Iron(III) porphyrin anchored onto organosilylated multiwalled carbon nanotubes as an active catalyst for epoxidation reactions under mild conditions. J Mater Sci 49, 1494–1505 (2014). https://doi.org/10.1007/s10853-013-7830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7830-7

Keywords

Navigation