Journal of Materials Science

, Volume 49, Issue 3, pp 1049–1057 | Cite as

Influence of heat treatment conditions on the structure of hollow carbon fibers prepared from solid PVA fibers using iodine pretreatment

  • Ummul Khair FatemaEmail author
  • Fujio Okino
  • Yasuo Gotoh


The influence of heating conditions on the structure of hollow carbon fibers (H-CFs) during their fabrication from solid poly(vinyl alcohol) (PVA) fibers is reported. The hollow structure of PVA-derived carbon was formed by selective iodination and subsequent stabilization of precursor PVA fiber close to the fiber surface followed by carbonization. The broadening of X-ray diffraction peaks due to disorder and the small size effects of the (002) plane were strongly reduced by increasing the heat treatment temperature (HTT) from 800 to 3000 °C, but the asymmetric shape of (10) and (110) reflections suggests turbostratic layer stacking. The increase of HTT to 3000 °C increased the degree of graphitization evident from the decrease of interplanar spacing from 0.360 to 0.338 nm and the intensity ratio of D to G bands in Raman spectra from 0.93 to 0.58. The crystallite size, orientation and electrical conductivity of the resultant H-CFs were also improved with higher HTT. Besides, the size of the hollow core was also influenced by the HTT and both wall thickness and carbon yield decreased with higher HTT. The core of the H-CFs could be easily filled with polymer by bulk polymerization of monomer.


Heat Treatment Temperature Hollow Structure Carbonization Temperature Volume Resistivity Carbon Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a project for “Creation of Innovation Centers for Advanced Interdisciplinary Research Areas” with special coordination funds for promoting science and technology from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Burchell TD (1999) Carbon materials for advanced technologies. Pergamon, OxfordGoogle Scholar
  2. 2.
    Peng H, Chen D, Huang JY, Chikkannanavar SB, Hänisch J, Jain M et al (2008) Phys Rev Lett 101:145501PubMedCrossRefADSGoogle Scholar
  3. 3.
    Saufi SM, Ismail AF (2004) Carbon 42(2):241CrossRefGoogle Scholar
  4. 4.
    Robert LN, Timothy DB (1994) US Patent 5,338,605Google Scholar
  5. 5.
    Koresh J, Soffer A (1983) Sep Sci Technol 18:723CrossRefGoogle Scholar
  6. 6.
    Ismail AF, David LIB (2001) A J Membr Sci 193:1CrossRefGoogle Scholar
  7. 7.
    Adelhelm P, Hu YS, Antonietti M, Maierd J, Smarsly BM (2009) J Mat Chem 19:1616CrossRefGoogle Scholar
  8. 8.
    Yu Y, Gu L, Wang C, Dhanabalan A, Aken PA, Maier J (2009) Angew Chem Int Ed 48:6485CrossRefGoogle Scholar
  9. 9.
    Xie W, Cheng HF, Chu ZY, Zhou YJ, Liu HT, Chen ZH (2009) Mater Design 30:1201CrossRefGoogle Scholar
  10. 10.
    Xie W, Cheng HF, Chu ZY et al (2007) Preparation and microwave absorbing properties of hollow carbon fibers. J Cent South Univ Technol 14(2):112Google Scholar
  11. 11.
    Yanan S, Jose KA, Neo CP et al (2002) Microwave Opt Technol Lett 32(4):245CrossRefGoogle Scholar
  12. 12.
    Donnet J, Wang TK, Rebouillat S, Peng JCM (1998) Carbon fibers, vol 3. Marcel Dekker Inc., New YorkGoogle Scholar
  13. 13.
    Lan YJ, Tai SC, Raj R (2007) Carbon 45:166CrossRefGoogle Scholar
  14. 14.
    Yang MC, Chou MT (1996) J Membr Sci 116:279CrossRefGoogle Scholar
  15. 15.
    Saufi SM, Ismail AF (2002) Membr Sci Technol 4:844Google Scholar
  16. 16.
    Favvas EP, Kouvelos EP, Romans GE, Pilatos GI, Mitropoulos AC, Kanellopoulos NK (2008) J Porus Mater 15:625CrossRefGoogle Scholar
  17. 17.
    Favvas EP, Kapantaidakis GC, Nolan JW, Mitropoulos AC, Kanellopoulos NK (2007) J Mater Proc Technol 186:102CrossRefGoogle Scholar
  18. 18.
    Bhardwaj V, Macintosh A, Sharpe ID, Gordeyev SA, Shilton SJ (2003) Adv Membr Technol 984:318Google Scholar
  19. 19.
    Zhu G, Chung TS, Loh KC (2000) J Appl Polym Sci 76(5):695CrossRefGoogle Scholar
  20. 20.
    Teresa AC, Antonio BF (2000) Carbon 38(7):1067CrossRefGoogle Scholar
  21. 21.
    Song C, Wang T, Jiang H, Wang X, Cao Y, Qiu J (2010) J Membr Sci 362:22CrossRefGoogle Scholar
  22. 22.
    Barbosa-Coutinho E, Salim VMM, Borges CP (2003) Carbon 41(9):1707CrossRefGoogle Scholar
  23. 23.
    Cheng Y, Zhang J, Zhang Y, Chen X, Wang Y, Ma H et al (2009) Eur J Inorg Chem 4248Google Scholar
  24. 24.
    Sun L, Cheng H, Chu Z, Zhou Y (2009) Acta Polymerica Sinica 1:61CrossRefGoogle Scholar
  25. 25.
    Shi Z, Zhang T, Xu L, Feng Y (2008) Micropor Mesopor Mater 116:698CrossRefGoogle Scholar
  26. 26.
    Fatema UK, Tomizawa C, Harada M, Gotoh Y (2011) Carbon 49(6):2158CrossRefGoogle Scholar
  27. 27.
    Yamashita J (2003) JP Patent; 28407Google Scholar
  28. 28.
    Fatema UK, Ahmed JU, Uemura K, Gotoh Y (2011) Tex Res J 81(7):659CrossRefGoogle Scholar
  29. 29.
    Han GC, Marilyn LM, Asif R (2007) Polymer 48:3781CrossRefGoogle Scholar
  30. 30.
    Zhang Q, Yang DJ, Wang SG, Yoon SF, Ahn J (2006) Smart Mater Struct 15:S1. doi: 10.1088/0964-1726/15/1/001 CrossRefADSGoogle Scholar
  31. 31.
    Li WZ, Wen JG, Ren ZF (2002) Appl Phys A 74:397CrossRefADSGoogle Scholar
  32. 32.
    He M, Rikkinen E, Zhu Z, Tian Y, Anisimov AS, Jiang H et al (2010) J Phys Chem C 114:13540CrossRefGoogle Scholar
  33. 33.
    Khan MMR, Gotoh Y, Morikawa H, Miura M (2009) J Mater Sci 44:4235CrossRefADSGoogle Scholar
  34. 34.
    Chaishi S, Murakami Y, Miyauchi Y, Maruyaman S (1999) Thermal Sci Eng 7(4):10Google Scholar
  35. 35.
    Kokaji K, Oya A, Maruyama K (1997) Carbon 35(2):253CrossRefGoogle Scholar
  36. 36.
    Shinn-Shyong T, Pan JH (2002) Mater Chem Phys 74:214CrossRefGoogle Scholar
  37. 37.
    Vaisman L, Larin B, Davidi I, Ellen W, Gad M, H.-Daniel W (2007) Compos Part A Appl Sci Manuf 38:1354CrossRefGoogle Scholar
  38. 38.
    Tin PS, Xiao YC, Chung TS (2006) Sep Purif Rev 35:285CrossRefGoogle Scholar
  39. 39.
    Wei X, Cheng HF, Chu ZY, Chen ZH (2009) Ceram Inter 35:2705CrossRefGoogle Scholar
  40. 40.
    Tsai HA, Ciou YS, Lee KR, Yu DG, Lai JY (2005) J Membr Sci 255:33CrossRefGoogle Scholar
  41. 41.
    Sun J, Wu G, Wang Q (2005) J Appl Polym Sci 97:2155CrossRefGoogle Scholar
  42. 42.
    Sun J, Wang Q (2006) J Appl Polym Sci 100:3778CrossRefGoogle Scholar
  43. 43.
    Tai FC, Wei C, Chang SH, Chen WS (2010) J Raman Spectrosc 41(9):933CrossRefADSGoogle Scholar
  44. 44.
    Fatema UK, Gotoh Y (2011) Appl Surf Sci 258:883CrossRefADSGoogle Scholar
  45. 45.
    Fujimori Y, Gotoh Y, Kawaguchi A, Ohkoshi Y, Nagura M (2008) J Appl Poly Sci 108:2814CrossRefGoogle Scholar
  46. 46.
    Otani S, Okuda K, Matsuda S (1986) Carbon fiber, vol 1. Kindai Henshu Ltd., Tokyo, p 8Google Scholar
  47. 47.
    Barros EB, Demir NS, Filho AGS, Filho JM, Jorio A, Dresselhaus G et al (2005) Phys Rev B 71:165422CrossRefADSGoogle Scholar
  48. 48.
    Pimento MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Phys Chem Chem Phys 9:1276CrossRefGoogle Scholar
  49. 49.
    Smisek M, Cerny S (1970) Active carbon-manufacture, properties and applications. Elsevier Pub. Co., New York, p 53Google Scholar
  50. 50.
    Belenkov EA (2001) Inorganic Mater 37(9):928CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Wet Processing EngineeringBangladesh University of TextilesDhakaBangladesh
  2. 2.Department of Applied Chemistry, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  3. 3.Department of Functional Polymer Science, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan

Personalised recommendations