Skip to main content

Low-temperature processing of thin films based on rutile TiO2 nanoparticles for UV photocatalysis and bacteria inactivation

Abstract

Using a low-temperature, simple, and economic processing technique, TiO2 nanoparticles (rutile phase) are immobilized in an inorganic matrix and then deposited on glass for bacteria inactivation in water. Using this low thermal budget method (maximum processing temperature of 220 °C), thin films of immobilized TiO2 nanoparticles are obtained so that practical water decontamination after UV radiation is possible by avoiding the additional step of catalyst separation from treated water. In order to validate the photocatalytic activities of these TiO2 nanoparticles (prepared as thin films), they were tested for bacteria inactivation in water under UV–A radiation (λ > 365 nm), while extensive characterizations by dynamic light scattering, X-ray diffraction, ultra violet–visible absorption spectroscopy, fourier-transform infra red spectroscopy, and profilometry were also carried out. Despite previous reports on the low or lack of photocatalytic activity of rutile-phase TiO2, inactivation of Escherichia coli in water was observed when thin films of this material were used when compared with the application of UV radiation alone. Physical characterization of the films suggests that size and concentration-related effects may allow the existence of photocatalytic activity for rutile-TiO2 as long as they are exposed under UV–A radiation, whereas no effect on bacteria inactivation was observed for thin films in the absence of TiO2 or radiation. In brief, a low thermal budget process applied to thin films based on TiO2 nanoparticles has shown to be useful for bacteria inactivation, while possible application of these films on widely available substrates like polyethylene terephthalate materials is expected.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Qu X, Alvarez PJJ, Li Q (2013) Water Res 47(12):3931

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Chong MN, Jin B, Chow CWK, Saint C (2010) Water Res 44(10):2997

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Dey T (ed) (2012) Nanotechnology for water purification. Brown Walker Press, Boca Raton

    Google Scholar 

  4. 4.

    Banerjee AN (2011) Nanotechnol Sci Appl 4(1):35

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. 5.

    Nakata K, Fujishima A (2012) J Photochem Photobiol C 13(3):169

    CAS  Google Scholar 

  6. 6.

    Ding Z, Lu GQ, Greenfield PF (2000) J Phys Chem B 104(19):4815

    Article  CAS  Google Scholar 

  7. 7.

    Kandiel TA, Dillert R, Feldhoff A, Bahnemann DW (2010) J Phys Chem C 114(11):4909

    Article  CAS  Google Scholar 

  8. 8.

    Behnajady MA, Modirshahla N, Shokri M, Rad b (2008) Glob NEST J 10(1):1

    Google Scholar 

  9. 9.

    Kim DH, Choi DK, Kim SJ, Lee KS (2008) Catal Commun 9(5):654

    Article  CAS  Google Scholar 

  10. 10.

    He J, Liu Q, Sun Z, Yan W, Zhang G, Qi Z, Xu P, Wu Z, Wei S (2010) J Phys Chem C 114(13):6035

    Article  CAS  Google Scholar 

  11. 11.

    Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT (2004) J Phys Chem B 108(1):52

    CAS  Google Scholar 

  12. 12.

    Valentin CD, Pacchion G, Selloni A (2004) Phys Rev B 70(8):085116

    Article  ADS  Google Scholar 

  13. 13.

    Hsu SW, Yang TS, Chen TK, Wong MS (2007) Thin Solid Films 515(7–8):3521

    Article  CAS  ADS  Google Scholar 

  14. 14.

    Molina J, Munoz AL, Torres A, Landa M, Alarcon P, Escobar M (2011) Mater Sci Eng B 176(17):1353

    Article  CAS  Google Scholar 

  15. 15.

    Tauc J (1968) Mater Res Bull 3(1):37

    Article  CAS  Google Scholar 

  16. 16.

    Pankove JI (ed) (1984) Semiconductors and semimetals, part B optical properties, chap 2: the optical absorption edge of a-Si: H. Academic Press, New York, p 11

  17. 17.

    Music S, Vincekovic NF, Sekovanic L (2011) Braz J Chem Eng 28(1):89

    CAS  Google Scholar 

  18. 18.

    Lopez T, Sanchez E, Bosch P, Meas Y, Gomez R (1992) Mater Chem Phys 32(2):141

    CAS  Google Scholar 

  19. 19.

    Murashkevich AN, Lavistkaya AS, Barannikova TI, Zharskii IM (2008) J Appl Spectrosc 75(5):730

    Article  CAS  ADS  Google Scholar 

  20. 20.

    Goldstein DN, McCormick JA, George SM (2008) J Phys Chem C 112(49):19530

    Article  CAS  Google Scholar 

  21. 21.

    Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J (2001) J Catal 202(2):413

    Article  CAS  Google Scholar 

  22. 22.

    Swanepoel R (1983) J Phys E 16(1):1214

    MathSciNet  CAS  ADS  Google Scholar 

  23. 23.

    Sreemany M, Sen S (2004) Mater Chem Phys 83(1):169

    CAS  Google Scholar 

  24. 24.

    Dharma J, Pisal A (2012) Simple method of measurement the band gap energy value of TiO2 in the powder form using UV/Vis/NIR spectrometer. Application Note. PerkinElmer Inc., Shelton

    Google Scholar 

  25. 25.

    Valencia S, Marin JM, Restrepo G (2010) Open Mater Sci J 4(1):9

    CAS  Google Scholar 

Download references

Acknowledgements

J. Molina thanks Alfredo Morales S. (Centro de Investigacion en Materiales Avanzados, CIMAV) for the latter's support on XRD measurements. This study was fully supported by the National Council of Science and Technology (CONACYT-Mexico).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joel Molina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molina, J., Sanchez-Salas, J.L., Zuniga, C. et al. Low-temperature processing of thin films based on rutile TiO2 nanoparticles for UV photocatalysis and bacteria inactivation. J Mater Sci 49, 786–793 (2014). https://doi.org/10.1007/s10853-013-7761-3

Download citation

Keywords

  • TiO2
  • Rutile
  • Photocatalytic Activity
  • TiO2 Nanoparticles
  • TiO2 Film