Skip to main content
Log in

Optical absorption spectrum of rotated trilayer graphene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using ab initio calculations we have studied the optical linear response of different configurations of twisted trilayer graphene systems. We have found that when one of the outer layers is rotated the system shows an angle-dependent optical spectrum as its twisted bilayer counterpart; however, in this case there are two absorption peaks located in the visible range of the spectrum and one more in the intermediate infrared range for large relative rotation angles. When two layers are rotated the spectrum exhibits only two absorption peaks in the visible range revealing information about the two relative rotation angles between the layers in the structure. All these absorption peaks in the visible range shift to the intermediate infrared range for small angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. A rotated unit cell around 14.5° contains more than 1600 atoms making unviable a DFT calculation. We have calculated instead the closest in angle and smallest commensurate unit cell

References

  1. Kuzmenko AB, van Heumen E, Carbone F, van der Marel D (2008) Phys Rev Lett 100:117401

    Article  PubMed  CAS  ADS  Google Scholar 

  2. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320(5881):1308

    Article  PubMed  CAS  ADS  Google Scholar 

  3. McCann E (2006) Phys Rev B 74:161403

    Article  ADS  Google Scholar 

  4. Abergel DSL, Fal’ko Vladimir I (2007) Phys Rev B 75:155430

    Article  ADS  Google Scholar 

  5. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus Mildred S, Kong J (2009) Nano Lett 9(1):30

    Article  PubMed  CAS  ADS  Google Scholar 

  6. Lopesdos Santos JMB, Peres NMR, Castro Neto AH (2007) Phys Rev Lett 99:256802

    Article  CAS  ADS  Google Scholar 

  7. Shallcross S, Sharma S, Pankratov OA (2008) Phys Rev Lett 101:056803

    Article  PubMed  CAS  ADS  Google Scholar 

  8. Shallcross S, Sharma S, Kandelaki E, Pankratov OA (2010) Phys Rev B 81:165105

    Article  ADS  Google Scholar 

  9. Suárez Morell E, Correa JD, Vargas P, Pacheco M, Barticevic Z (2010) Phys Rev B 82(12):121407

    Article  ADS  Google Scholar 

  10. Chen Z, Wang X-Q (2011) Phys Rev B 83:081405

    Article  ADS  Google Scholar 

  11. Suárez Morell E, Vargas P, Chico L, Brey L (2011) Phys Rev B 84:195421

    Article  ADS  Google Scholar 

  12. San-Jose P, González J, Guinea F (2012) Phys Rev Lett 108:216802

    Article  PubMed  CAS  ADS  Google Scholar 

  13. Bistritzer R, MacDonald Allan H (2011) PNAS 108:12233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Tramblyde Laissardière G, Mayou D, Magaud L (2010) Nano Lett 10(3):804

    Article  ADS  Google Scholar 

  15. Tramblyde Laissardière G, Mayou D, Magaud L (2012) Phys Rev B 86:125413

    Article  ADS  Google Scholar 

  16. Guohong L, Luican A, Lopesdos Santos JMB, Castro Neto AH, Reina A, Kong J, Andrei EY (2010) Nat Phys 6:109

    Google Scholar 

  17. Wang Y, Ni Z, Liu L, Liu Y, Cong C, Yu T, Wang X, Shen D, Shen Z (2010) ACS Nano 4(7):4074

    Article  PubMed  CAS  Google Scholar 

  18. Brihuega I, Mallet P, González-Herrero H, Tramblyde Laissardière G, Ugeda MM, Magaud L, Gómez-Rodríguez JM, Ynduráin F, Veuillen J-Y (2012) Phys Rev Lett 109:196802

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Yan W, Liu M, Dou R-F, Meng L, Feng L, Chu Z-D, Zhang Y, Liu Z, Nie J-C, He L (2012) Phys Rev Lett 109:126801

    Article  PubMed  ADS  Google Scholar 

  20. Moon P, Koshino M (2013) Phys Rev B 87:205404

    Article  ADS  Google Scholar 

  21. Koshino M, McCann E (2010) Phys Rev B 81:115315

    Article  ADS  Google Scholar 

  22. Aoki M, Amawashi H (2007) Solid State Commun 142(3):123

    Article  CAS  ADS  Google Scholar 

  23. Mak Kin F, Shan J, Heinz Tony F (2010) Phys Rev Lett 104:176404

    Article  PubMed  ADS  Google Scholar 

  24. Mikito K (2013) New J Phys 15(1):015010

    Article  Google Scholar 

  25. Berger C, Zhimin S et al. (2004) J Phys Chem B 108(52):19912

  26. Varchon F, Mallet P, Magaud L, Veuillen J-Y (2008) Phys Rev B 77:165415

    Article  ADS  Google Scholar 

  27. Miller David L, Kubista Kevin D, Rutter Gregory M, Ruan M, de Heer Walt A, First Phillip N, Stroscio Joseph A (2010) Phys Rev B 81:125427

    Article  ADS  Google Scholar 

  28. Campanera JM, Savini G, Suarez-Martinez I, Heggie MI (2007) Phys Rev B 75:235449

    Article  ADS  Google Scholar 

  29. Soler José M, Artacho E, Gale Julian D, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys 14:2745

    Google Scholar 

  30. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  PubMed  CAS  ADS  Google Scholar 

  31. Chakarova-Käck Svetla D, Schröder E, Lundqvist Bengt I, Langreth David C (2006) Phys Rev Lett 96:146107

    Article  PubMed  ADS  Google Scholar 

  32. Ruiz-Tagle I, Orellana W (2010) Phys Rev B 82:115406

    Article  ADS  Google Scholar 

  33. Correa JD, Orellana W (2012) Phys Rev B 86:125417

    Article  ADS  Google Scholar 

  34. Suárez Morell E, Pacheco M, Chico L, Brey L (2013) Phys Rev B 87:125414

    Article  ADS  Google Scholar 

  35. Sato K, Saito R, Cong C, Yu T, Dresselhaus Mildred S (2012) Phys Rev B 86:125414

    Article  ADS  Google Scholar 

  36. Havener Robin W, Zhuang H, Brown L, Hennig Richard G, Park J (2012) Nano Lett 12(6):3162

    Article  PubMed  CAS  Google Scholar 

  37. Zarifi A, Garm Pedersen T (2009) Phys Rev B 80:195422

    Article  ADS  Google Scholar 

  38. Correa JD, Rocha CG, Latg A, Pacheco M (2011) J Phys 23(6):065301

    CAS  Google Scholar 

  39. Latil S, Meunier V, Henrard L (2007) Phys Rev B 76:201402

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E. S. M. acknowledges DGIP/USM for the internal Grant 111217 M P thanks FONDECYT Grant 1100672 and DGIP/USM internal Grant 111162. J. D. C thanks project Grid Colombia-UdeM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian D. Correa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correa, J.D., Pacheco, M. & Morell, E.S. Optical absorption spectrum of rotated trilayer graphene. J Mater Sci 49, 642–647 (2014). https://doi.org/10.1007/s10853-013-7744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7744-4

Keywords