Skip to main content
Log in

Synthesis and luminescent properties of BaLn2(1−x)ZnO5:2xTb3+ (Ln = Y, Gd) nanophosphors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The synthesis of BaLn2(1−x)ZnO5:2xTb3+ (Ln = Y, Gd) nanophosphors using solution combustion method with an aim to study the effect of sintering temperature and Tb3+ ions concentration on the luminescent properties has been investigated. Under UV excitation, BaY2(1−x)ZnO5 and BaGd2(1−x)ZnO5 nanoparticles exhibit apparent characteristic green emission from 5D4 state to 7F6−3 states of Tb3+ ions with the strongest at 544 nm. Luminescence concentration quenching could be observed when the Tb3+ ions contents were more than 4 mol% in both nanophosphors. The luminescence decay curves suggest monoexponential behavior of both nanophosphors. X-ray diffraction results confirmed the single-phased orthorhombic structure of both powders belonging to space group Pbnm. TEM analysis indicates the spherical morphology of nanoparticles with average grain size in the range of 85–95 nm. BaY2(1−x)Tb2x ZnO5 and BaGd2(1−x)Tb2x ZnO5 nanophosphors may have potential applications in field emission displays based on their uniform shape, low-cost synthetic route, and diverse luminescent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krsmanovic R, Antic Z, Bartova B, Dramicanin MD (2010) J Alloys Compd 505:224. doi:10.1016/j.jallcom.2010.06.033

    Article  CAS  Google Scholar 

  2. Yan SA, Wang JW, Chang YS, Hwang WS, Chang YH (2012) Ceram Inter 38:2569. doi:10.1016/j.ceramint.2011.10.006

    Article  CAS  Google Scholar 

  3. Liang CH, Teoh LG, Liu KT, Chang YS (2012) J Alloys Compds 517:9. doi:10.1016/j.jallcom.2011.11.088

    Article  CAS  Google Scholar 

  4. Dai SH, Liu YF, Lu YN, Min HH (2010) Powder Techno 202:178. doi:10.1016/j.powtec.2010.04.036

    Article  CAS  Google Scholar 

  5. Zhu H, Ou G, Gao L (2010) Mater Chem Phys 121:414. doi:10.1016/j.matchemphys.2010.01.007

    Article  CAS  Google Scholar 

  6. Shang Y, Yang P, Wang W, Wang Y, Niu N, Gai S, Lin J (2011) J Alloys Compd 509:837. doi:10.1016/j.jallcom.2010.09.105

    Article  CAS  Google Scholar 

  7. Sailaja S, Dhoble SJ, Reddy BS (2011) J. Molecular Struct 1003:115. doi:10.1016/j.molstruc.2011.07.048

    Article  CAS  ADS  Google Scholar 

  8. Cruz GK, Basso HC, Terrile MC, Carvalho RA (2000) J Lumin 86:155. doi:10.1016/S0022-2313(99)00198-2

    Article  CAS  Google Scholar 

  9. Hernandez-Perez A, Camarillo GE, Villafuerte-Castrejon ME, Bucio L, Flores MC, Hernandez AJ, Murrieto SH (2006) Opt Mater 28:336. doi:10.1016/j.optmat.2005.01.019

    Article  CAS  ADS  Google Scholar 

  10. Liang CH, Chang YC, Chang YS (2008) Appl Phys Lett 93:1. doi:10.1063/1.2998299 211902

    Google Scholar 

  11. Huang Y, Shi L, Kim ES, Seo HY (2009) J Appl Phys 105:1. doi:10.1063/1.3056167 013512

    Google Scholar 

  12. Birkel A, Mikhailovsky AA, Cheetham AK (2009) Chem Phys Lett 477:325. doi:10.1016/j.cplett.2009.06.079

    Article  CAS  ADS  Google Scholar 

  13. Guo C, Ding X, Xu Y (2010) J Am Ceram Soc 93:1708. doi:10.1111/j.1551-2916.2010.03640

    CAS  Google Scholar 

  14. Bandi VR, Grandhe BK, Jang K, Lee HS, Shin DS, Yi SS, Jeong JH (2012) J Alloys Compd 512:264. doi:10.1016/j.jallcom.2011.09.078

    Article  CAS  Google Scholar 

  15. Chen HY, Yang RY, Chang SJ (2010) Mater Lett 64:2548. doi:10.1016/j.matlet.2010.08.023

    Article  CAS  Google Scholar 

  16. Etchart I, Hernández I, Huignard A, Bérard M, Laroche M, Gillin WP, Curry RJ, Cheetham AK (2011) Oxide phosphors for light upconversion; Yb3+ and Tm3+ co-doped Y2BaZnO5. J Appl Phys 109: 063104 (1). doi:10.1063/1.3549634

  17. Guo C, Yu J, Jeong JH, Ren Z, Bai J (2011) Phys B 406:916. doi:10.1016/j.physb.2010.12.027

    Article  CAS  ADS  Google Scholar 

  18. Shi L, Seo HJ (2011) J Lumin 131:523. doi:10.1016/j.jlumin.2010.09.020

    Article  CAS  Google Scholar 

  19. Tian B, Chen B, Tian Y, Sun J, Li X, Zhang J, Zhong H, Cheng L, Hua R (2012) J Phys Chem Solids 73:1314. doi:10.1016/j.jpcs.2012.06.016

    Article  CAS  ADS  Google Scholar 

  20. Taikar DR, Joshi CP, Moharil SV, Muthal PL, Dhopte SM (2012) J Lumin 132:1112. doi:10.1016/j.jlumin.2011.12.049

    Article  CAS  Google Scholar 

  21. Jaffres A, Viana B, Van der Kolk E (2012) Chem Phys Lett 527:42. doi:10.1016/j.cplett.2011.12.071

    Article  CAS  ADS  Google Scholar 

  22. Kaduk JA, Wong-Ng W, Greenwood W, Dillingham J, Toby BH (1999) J Res Natl Inst Stand Technol 104:147

    Article  CAS  Google Scholar 

  23. Lammers MJ, Donker H, Blasse G (1985) Mater Chem Phys 13:527. doi:10.1016/0254-0584(85)90003-3

    Article  CAS  Google Scholar 

  24. Kunimin S, Fujihara S (2010) J Electrochem Soc 157(5):J175. doi:10.1149/1.3358109

    Article  Google Scholar 

  25. Chen HY, Weng MH, Yang RY, Chang SJ (2011) Ceram Inter 37:1521. doi:10.1016/j.ceramint.2011.01.014

    Article  CAS  Google Scholar 

  26. Chen HY, Yang RY, Chang SJ (2013) J Phys Chem Solids 74:344. doi:10.1016/j.jpcs.2012.10.010

    Article  CAS  ADS  Google Scholar 

  27. Mari B, Singh KC, Sahal M, Khatkar SP, Taxak VB, Kumar M (2011) J Lumin 131:587. doi:10.1016/j.jlumin.2010.10.035

    Article  CAS  Google Scholar 

  28. Sheetal Taxak VB, Mandeep Khatkar SP (2013) J Alloys Compd 549:135. doi:10.1016/j.jallcom.2012.09.033

    Article  CAS  Google Scholar 

  29. Ekambaram S, Maaza M, Patil KC (2005) J Alloys comp 393:81. doi:10.1016/j.jallcom.2004.10.015

    Article  CAS  Google Scholar 

  30. Mari B, Singh KC, Sahal M, Khatkar SP, Taxak VB, Kumar M (2010) J Lumin 130:2128. doi:10.1016/j.jlumin.2010.06.005

    Article  CAS  Google Scholar 

  31. Potdevin A, Chadeyron G, Mahiou R (2010) Chem Phys Lett 490:50. doi:10.1016/j.cplett.2010.03.003

    Article  CAS  ADS  Google Scholar 

  32. Blasse G, Grabmaier BC (1994) Luminescent Material, Energy transfer 91, Springer, Berlin. doi:10.1007/978-3-642-79017-1.

  33. Khatkar SP, Han SD, Taxak VB, Sharma G, Kumar D (2006) Synthesis and luminescent properties of CaIn2O4:xTb nanocrystals. Curr Appl Phys 6S1: e192. doi: 10.1016/j.cap.2006.01.037

  34. Hao J, Studenikin SA, Cocivera M (2001) J Lumin 93:313. doi:10.1016/S0022-2313(01)00207-1

    Article  CAS  Google Scholar 

  35. Zhang HX, Buddhudu S, Kam CH, Zhou Y, Lam YL, Wong KS, Ooi BS, Ng SL, Que WL (2001) Mater Chem Phys 68:31. doi:10.1016/S0254-0584(00)00274-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Ms. Sonika gratefully acknowledges the financial support in the form of Junior Research Fellowship (Union Grant Commission) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Taxak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonika, Khatkar, S.P., Kumar, M. et al. Synthesis and luminescent properties of BaLn2(1−x)ZnO5:2xTb3+ (Ln = Y, Gd) nanophosphors. J Mater Sci 49, 572–579 (2014). https://doi.org/10.1007/s10853-013-7737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7737-3

Keywords

Navigation