Skip to main content
Log in

Analysis of through-thickness heterogeneities of microstructure and texture in nickel after accumulative roll bonding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript


The through-thickness heterogeneities of the microstructure and texture have been investigated in pure nickel processed by six cycles of accumulative roll bonding (ARB) with lubrication applied during each rolling pass. Strong rolling textures are found in the intermediate and center layers of the deformed sample, whereas increased fractions of the shear texture are observed near the surface. Significant differences at different depths are also revealed in the fractions of areas containing either predominantly low angle misorientations or predominantly high angle misorientations. It is found that the fractions of such areas are much more sensitive to the deformation history than the average parameters based on the measurements of the boundary spacing and fractions of high angle boundaries. For the material studied in this work, the area fraction of the low misorientation regions appears to correlate with the summed fraction of the rolling texture components. The observed microstructural and textural variations are discussed and compared with literature data, taking into account the influence of large-draught rolling and lubrication on the distribution of strain imposed during the ARB process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221

    Article  CAS  Google Scholar 

  2. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  3. Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 50:3789

    Article  CAS  Google Scholar 

  4. Mishin OV, Juul Jensen D, Hansen N (2003) Mater Sci Eng A 342:320

    Article  Google Scholar 

  5. Zhang HW, Huang X, Hansen N (2008) Acta Mater 56:5451

    Article  CAS  Google Scholar 

  6. Mishin OV, Juul Jensen D, Hansen N (2010) Metal Mater Trans A 41:2936

    Article  Google Scholar 

  7. Lee SH, Saito Y, Sakai T, Utsunomiya H (2002) Mater Sci Eng A 325:228

    Article  Google Scholar 

  8. Terada D, Inoue S, Tsuji N (2007) J Mater Sci 42:1673. doi:10.1007/s10853-006-0909-7

    Article  CAS  ADS  Google Scholar 

  9. Eizadjou M, Manesh HD, Janghorban K (2009) J Alloys Compd 474:406

    Article  CAS  Google Scholar 

  10. Zhang YB, Mishin OV, Kamikawa N, Godfrey A, Liu W, Liu Q (2013) Mater Sci Eng A 576:160

    Article  CAS  Google Scholar 

  11. Heason CP, Prangnell PB (2002) Mater Sci Forum 396–402:429

    Article  Google Scholar 

  12. Kim HW, Kang SB, Tsuji N, Minamino Y (2005) Metal Mater Trans A 36:3151

    Article  Google Scholar 

  13. Kamikawa N, Tsuji N, Huang X, Hansen N (2007) Mater Trans 48:1978

    Article  CAS  Google Scholar 

  14. Li S, Sun F, Li H (2010) Acta Mater 58:1317

    Article  CAS  Google Scholar 

  15. Bhattacharjee PP, Terada D, Tsuji N (2009) In: Suwas S, Bhattacharjee D, Haldar A (eds) Microstructure and texture in steels. Springer, London, p 421

    Chapter  Google Scholar 

  16. Schoenfeld SE, Asaro RJ (1996) Int J Mech Sci 38:661

    MATH  Google Scholar 

  17. Bhattacharjee PP, Tsuji N, Ray RK (2011) Metal Mater Trans A 42:2769

    Article  CAS  Google Scholar 

  18. Mishin OV, Bowen JR (2009) Metal Mater Trans A 40:1684

    Article  Google Scholar 

  19. Godfrey A, Mishin OV, Yu TB (2012) Mater Sci Forum 715–716:203

    Article  Google Scholar 

  20. Mishin OV, Segal VM, Ferrasse S (2012) Metal Mater Trans A 40:4767

    Article  Google Scholar 

  21. Luo ZP, Mishin OV, Zhang YB, Zhang HW, Lu K (2012) Scr Mater 66:335

    Article  CAS  Google Scholar 

  22. Truszkowski W, Krol J, Major B (1980) Metal Trans A 11:749

    Article  Google Scholar 

  23. Truszkowski W, Krol J, Major B (1982) Metal Trans A 13:665

    Article  CAS  Google Scholar 

  24. Pirgazi H, Akbarzadeh A, Petrov R, Sidor J, Kestens L (2008) Mater Sci Eng A 492:110

    Article  Google Scholar 

  25. Roy S, Nataraj BR, Suwas S, Kumar S, Chattopadhyay K (2012) J Mater Sci 47:6402. doi:10.1007/s10853-012-6567-z

    Article  CAS  ADS  Google Scholar 

  26. Engler O, Huh M-Y, Tomé CN (2000) Metal Mater Trans A 31:1692

    Article  Google Scholar 

  27. Hughes DA, Hansen N (1993) Metal Trans A 24:2021

    Google Scholar 

  28. Hughes DA, Hansen N (2000) Acta Mater 48:2985

    Article  CAS  Google Scholar 

  29. Humphreys FJ (2001) J Mater Sci 36:3833. doi:10.1023/A:1017973432592

    Article  CAS  ADS  Google Scholar 

  30. Mishin OV, Godfrey A, Östensson L (2006) Metal Mater Trans A 37:489

    Article  Google Scholar 

  31. Li BL, Tsuji N, Kamikawa N (2006) Mater Sci Eng A 423:331

    Article  Google Scholar 

  32. Godfrey A, Cao WQ, Hansen N, Liu Q (2005) Metal Mater Trans A 36:2371

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the support from the Danish National Research Foundation (Grant No. DNRF86-5) and the National Natural Science Foundation of China (Grant No. 51261130091) to the Danish-Chinese Center for Nanometals. Y. B. Zhang also acknowledges Professor Tsuji and Dr. Sun for their help with the ARB-processing.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Y. B. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.B., Mishin, O.V. & Godfrey, A. Analysis of through-thickness heterogeneities of microstructure and texture in nickel after accumulative roll bonding. J Mater Sci 49, 287–293 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: