Skip to main content
Log in

Electrical properties of hollow glass particle filled vinyl ester matrix syntactic foams

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low dielectric constant materials play a key role in modern electronics. In this regard, hollow particle reinforced polymer matrix composites called syntactic foams may be useful due to their low and tailored dielectric constant. In the current study, vinyl ester matrix/glass hollow particle syntactic foams are analyzed to understand the effect of hollow particle wall thickness and volume fraction on the dielectric constant of syntactic foams. The dielectric constant is found to decrease with increase in the hollow particle volume fraction and decrease in the wall thickness. Theoretical estimates are obtained for the dielectric constant of syntactic foams. Parametric studies are conducted using the theoretical model. It is found that a wide range of syntactic foam compositions can be tailored to have the same dielectric constant, which provides possibility of independently tailoring density and other properties based on the requirement of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Φ :

Volume fraction (subscripts m: matrix, g: glass, a: air, p: matrix porosity, mb: glass microballoon)

\( \varepsilon \) :

Dielectric constant (subscripts 0: vacuum)

η :

Radius ratio of hollow particle

\( r_{\text{i}} \), \( r_{\text{o}} \) :

Inner and outer radii of hollow particle

w :

Wall thickness of hollow particle

r e :

Radius of surrounding medium

\( \rho^{\text{th}} \), \( \rho^{\exp } \) :

Theoretical and experimental densities of syntactic foams

Z :

Impedance

R :

Resistance

X c :

Reactance

\( \phi \) :

Phase angle

f :

Frequency

C :

Capacitance

t :

Thickness of specimen

A :

Contact area

Ψ :

Electrical potential

ε e :

Dielectric constant of surrounding medium

a n , b n , D n , E n , G n , H n , I n , and J n :

Constants

P n (cosθ):

Legendre polynomial

r :

Radial distance

\( \delta_{m,n} \) :

Kronecker delta

K, L, and S :

Constants

\( e_{0} \) :

External applied field

α :

Polarization parameter

References

  1. Volksen W, Miller RD, Dubois G (2010) Chem Rev 110:56

    Article  PubMed  CAS  Google Scholar 

  2. Zhao X-Y, Liu H-J (2010) Polym Int 59:597. doi:10.1002/pi.2809

    CAS  Google Scholar 

  3. Gonon P, Sylvestre A, Teysseyre J, Prior C (2001) J Mater Sci 12:81. doi:10.1023/a:1011241818209

    CAS  Google Scholar 

  4. Miller KJ, Collier KN, Soll-Morris HB, Swaminathan R, McHenry ME (2009) J Appl Phys 105:07E714

    Google Scholar 

  5. Kohl PA (2011) Low-dielectric constant insulators for future integrated circuits and packages. Annual Reviews, Palo Alto, CA

  6. Maier G (2001) Prog Polym Sci 26:3

    Article  CAS  Google Scholar 

  7. Shutov FA (1991) Syntactic polymeric foams. Hanser Publishers, New York

    Google Scholar 

  8. Ashida K (1995) Syntactic foams. Noyes Publications, New Jersey

    Google Scholar 

  9. Gupta N, Kishore, Woldesenbet E, Sankaran S (2001) J Mater Sci 36:4485. doi:10.1023/a:1017986820603

    Article  CAS  ADS  Google Scholar 

  10. Gupta N, Shunmugasamy VC (2011) Mater Sci Eng A 528:7596. doi:10.1016/j.msea.2011.06.073

    Article  CAS  Google Scholar 

  11. Shunmugasamy V, Pinisetty D, Gupta N (2012) J Mater Sci 47:5596. doi:10.1007/s10853-012-6452-9

    Article  CAS  ADS  Google Scholar 

  12. Porfiri M, Gupta N (2009) Composites B 40:166. doi:10.1016/j.compositesb.2008.09.002

    Article  Google Scholar 

  13. Aureli M, Porfiri M, Gupta N (2010) Mech Mater 42:726. doi:10.1016/j.mechmat.2010.05.002

    Article  Google Scholar 

  14. Porfiri M, Nguyen NQ, Gupta N (2009) J Mater Sci 44:1540. doi:10.1007/s10853-008-3040-0

    Article  CAS  ADS  Google Scholar 

  15. Shabde V, Hoo K, Gladysz G (2006) J Mater Sci 41:4061. doi:10.1007/s10853-006-7637-x

    Article  CAS  ADS  Google Scholar 

  16. Dang ZM, Shen Y, Nan CW (2002) Appl Phys Lett 81:4814

    Article  CAS  ADS  Google Scholar 

  17. Jayasundere N, Smith BV (1993) J Appl Phys 73:2462. doi:10.1063/1.354057

    Article  ADS  Google Scholar 

  18. Gupta N, Ye R, Porfiri M (2010) Composites B 41:236. doi:10.1016/j.compositesb.2009.07.004

    Article  Google Scholar 

  19. Zhang W, Bhattacharya K (2005) Acta Materialia 53:185. doi:10.1016/j.actamat.2004.09.016

    Article  CAS  Google Scholar 

  20. Strauchs A, Mashkin A, Schnettler A, Podlazly J (2010) Solid Dielectrics (ICSD), 2010 10th IEEE International Conference on Solid Dielectrics (Potsdam, Germany, 2010), Potsdam

  21. Scaife BKP (1998) Principles of dielectrics. Clarendon press, Oxford

    Google Scholar 

  22. Zhu B, Ma J, Wang J, Wu J, Peng D (2012) J Reinf Plast Compos 31:1311. doi:10.1177/0731684412452918

    Article  Google Scholar 

  23. Zhu BL, Ma J, Wu J, Yung KC, Xie CS (2010) J Appl Polym Sci 118:2754

    Article  CAS  Google Scholar 

  24. Yung KC, Zhu BL, Yue TM, Xie CS (2009) Composites Science and Technology 69:260. doi:10.1016/j.compscitech.2008.10.014

    Article  CAS  Google Scholar 

  25. Poveda R, Gupta N, Porfiri M (2010) Mater Lett 64:2360. doi:10.1016/j.matlet.2010.07.063

    Article  CAS  Google Scholar 

  26. Shahin M, Al-Haj Abdallah M, Zihlif A (1995) J Polym Mater 12:151

    Google Scholar 

  27. Shahin M, Al-Haj Abdallah M, Zihlif A (1996) J Polym Mater 13:253

    CAS  Google Scholar 

  28. Park S-J, Jin F-L, Lee C (2005) Mater Sci Eng A 402:335. doi:10.1016/j.msea.2005.05.015

    Article  Google Scholar 

  29. Gupta N, Priya S, Islam R, Ricci W (2006) Ferroelectrics 345:1. doi:10.1080/00150190601018002

    Article  CAS  Google Scholar 

  30. Andritsch TM, Lunding A, Morshuis PHF, Negle H, Smit JJ (2007) 2007 Annual report conference on electrical insulation and dielectric phenomena, Vancouver, BC

  31. Ansermet JP, Baeriswyl E (1994) J Mater Sci 29:2841. doi:10.1007/BF01117591

    Article  CAS  ADS  Google Scholar 

  32. Andritsch T, Lunding A, Morshuis PHF, Negle H, Smit JJ (2008) Annual report conference on electrical insulation dielectric phenomena Quebec, QC

  33. Roggendorf C, Schnettler A (2012) IEEE Trans Dielectr Electr Insul 19:973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Office of Naval Research grant N00014-10-1-0988 with Dr. Yapa D.S. Rajapakse as the program manager. The authors thank the Department of Mechanical and Aerospace Engineering for providing facilities and support. Mohammed Omar is thanked for help in specimen preparation. Youngsu Cha and Linfeng Shen are thanked for helping with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shunmugasamy, V.C., Pinisetty, D. & Gupta, N. Electrical properties of hollow glass particle filled vinyl ester matrix syntactic foams. J Mater Sci 49, 180–190 (2014). https://doi.org/10.1007/s10853-013-7691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7691-0

Keywords

Navigation