Skip to main content
Log in

Preparation, characterization, and antibacterial activity of shell waste loaded with silver

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A green inorganic antibacterial material was prepared using shell waste as a carrier material loaded with silver. It was characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy equipped with an energy dispersive spectrometer (EDS), X-ray photoelectronic spectroscopy (XPS) and N2 adsorption isotherms. The antibacterial activity was evaluated using Staphylococcus aureus and Escherichia coli as sensitive indicator strains. The antibacterial mechanism was probed and discussed as well. Silver carbonate was detected in the prepared material through XRD analysis. XPS measurement and EDS analysis also confirmed the loading of silver onto the carrier. The antibacterial test demonstrated that the prepared material had good antibacterial property, especially against E. coli. Based on the silver ion release and pH test, as well as comparatively analyzing the characteristics of carrier material and prepared material, we proposed that the antibacterial mechanism mainly involved the antibacterial activity of silver ion, slightly higher pH value and supplementary photocatalytic antibacterial activity of silver carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. FAO (2010) Yearbook of fishery and aquaculture statistics 2008. Food and Agriculture Organization of the United Nations, Italy

    Google Scholar 

  2. Yang EI, Yi ST, Leem YM (2005) Cem Concr Res 35:2175

    Article  CAS  Google Scholar 

  3. Ahmad HA, Balander RJ (2003) J Appl Poult Res 12:509

    CAS  Google Scholar 

  4. Asaoka S, Yamamoto T, Kondo S, Hayakawa S (2009) Bioresour Technol 100:4127

    Article  CAS  Google Scholar 

  5. Jung JH, Yoo KS, Kim HG, Lee HK, Shon BH (2007) J Ind Eng Chem 13:512

    CAS  Google Scholar 

  6. Li HY, Tan YQ, Zhang L, Chen T, Song YH, Ye Y, Xia MS (2012) J Inorg Mater 27:1

    Article  Google Scholar 

  7. Li HY, Tan YQ, Zhang L, Zhang YX, Song YH, Ye Y, Xia MS (2012) J Hazard Mater 217–218:256

    Article  Google Scholar 

  8. Li HY, Zhang HY, Pan L, Chen T, Zhang L, Ye Y, Xia MS (2012) J Funct Mater 43:1519

    Google Scholar 

  9. Mustata F, Tudorachi N, Rosu D (2012) Compos Part B Eng 43:702

    Article  CAS  Google Scholar 

  10. Rungruang P, Grady BP, Supaphol P (2006) Colloids Surf A 275:114

    Article  CAS  Google Scholar 

  11. Yoo S, Hsieh JS, Zou P, Kokoszka J (2009) Bioresour Technol 100:6416

    Article  CAS  Google Scholar 

  12. Wang XQ, Jiang DG (2008) J China Univ Min Technol 18:76

    Article  Google Scholar 

  13. Yao L, Yang J, Sun J, Cai LF, He LH, Huang H, Song R, Hao YM (2011) Mater Chem Phys 129:523

    Article  CAS  Google Scholar 

  14. Top A, Ülkü S (2004) Appl Clay Sci 27:13

    Article  CAS  Google Scholar 

  15. Magaña SM, Quintana P, Aguilar DH, Toledo JA, Ángeles-Chávez C, Cortés MA, León L, Freile-Pelegrín Y, López T, Torres Sánchez RM (2008) J Mol Catal A 281:192

    Article  Google Scholar 

  16. Wang JC, Wang ZP, Guo S, Zhang JY, Song Y, Dong XM, Wang XN, Yu JH (2011) Microporous Mesoporous Mater 146:216

    Article  CAS  Google Scholar 

  17. Inoue Y, Hamashima H (2012) J Biomater Nanobiotechnol 3:114

    Article  CAS  Google Scholar 

  18. Inoue Y, Kogure M, Matsumoto K, Hamashima H, Tsukada M, Endo K, Tanaka T (2008) Chem Pharm Bull 56:692

    Article  CAS  Google Scholar 

  19. Kwakye-Awuah B, Williams C, Kenward MA, Radecka I (2008) J Appl Microbiol 104:1516

    Article  CAS  Google Scholar 

  20. Duncan TV (2011) J Colloid Interf Sci 363:1

    Article  CAS  Google Scholar 

  21. Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Int J Antimicrob Agents 27:513

    Article  CAS  Google Scholar 

  22. Hrenovic J, Milenkovic J, Goic-Barisic I, Rajic N (2003) Microporous Mesoporous Mater 169:148

    Article  Google Scholar 

  23. Ferreira L, Fonseca AM, Botelho G, Almeida-Aguiar C, Neves IC (2012) Microporous Mesoporous Mater 160:126

    Article  CAS  Google Scholar 

  24. Zhao DF, Zhou J, Liu N (2006) Appl Clay Sci 33:161

    Article  CAS  Google Scholar 

  25. Lin L, Zhang HF, Cui HY, Xu MQ, Cao SS, Zheng GH, Dong MD (2013) Colloid Surf B 101:97

    Article  CAS  Google Scholar 

  26. Hilonga A, Kim JK, Sarawade PB, Quang DV, Shao G, Elineema G, Kim HT (2012) Powder Technol 215–216:219

    Article  Google Scholar 

  27. Tuan TQ, Son NV, Dung HTK, Luong NH, Thuy BT, Anh NTV, Hoa ND, Hai NH (2011) J Hazard Mater 192:1321

    Article  Google Scholar 

  28. Iqbal N, Abdul Kadir MR, Nik Malek NAN, Humaimi Mahmood N, Raman Murali M, Kamarul T (2012) Mater Lett 89:118

    Article  CAS  Google Scholar 

  29. Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL (1994) J Bacteriol 176:1729

    CAS  Google Scholar 

  30. Hindler JF, Munro S (2004) In: Isenberg HD (ed) Clinical microbiology procedures handbook, vol 2. ASM Press, Washington

    Google Scholar 

  31. Kaplan DL (1998) Curr Opin Solid State Mater Sci 3:232

    Article  CAS  Google Scholar 

  32. Gilbert PUPA, Young A, Coppersmith SN (2011) Proc Natl Acad Sci USA 108:11350

    Article  CAS  Google Scholar 

  33. Gregg SJ, Sing KSW (1991) Adsorption surface area and porosity. Academic Press, London

    Google Scholar 

  34. Hu CH, Xia MS (2006) Appl Clay Sci 31:180

    Article  CAS  Google Scholar 

  35. Huo CL, Yang HM (2010) Appl Clay Sci 50:362

    Article  CAS  Google Scholar 

  36. Zhao Y, Wang ZQ, Zhao X, Li W, Liu SX (2012) Appl. Clay Sci. doi:10.1016/j.apsusc.2012.11.084

  37. Ortiz-Ibarra H, Casillas N, Soto V, Barcena-Soto M, Torres-Vitela R, de la Cruz W, Gómez-Salazar S (2007) J Colloid Interface Sci 314:562

    Article  CAS  Google Scholar 

  38. Schwartzberg AM, Zhang JZ (2008) J Phys Chem C 112:10323

    Article  CAS  Google Scholar 

  39. Chae HH, Kim BH, Yang KS, Rheed JI (2011) Synthetic Met 161:2124

    Article  CAS  Google Scholar 

  40. Losito I, Malitesta C, Bari ID, Calvano CD (2005) Thin Solid Films 473:104

    Article  CAS  Google Scholar 

  41. Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU Jr (1999) Carbon 37:1785

    Article  CAS  Google Scholar 

  42. Sharma J, Chaki NK, Mandale AB, Pasricha R, Vijayamohanan K (2004) J Colloid Interface Sci 272:145

    Article  CAS  Google Scholar 

  43. Tang XF, Chen JL, Li YG, Li Y, Xu YD, Shen WJ (2006) Chem Eng J 118:119

    Article  CAS  Google Scholar 

  44. Hüfner S, Wertheim GK, Wernick JH (1975) Solid State Commun 17:417

    Article  Google Scholar 

  45. Briggs D, Seah MP (1996) Practical surface analysis, vol 1, Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, New York

    Google Scholar 

  46. Ohniwa RL, Ushijima Y, Saito S, Morikawa K (2011) PLoS ONE 6:e19172

    Article  CAS  Google Scholar 

  47. Jia HS, Hou WS, Wei LQ, Xu BS, Liu XG (2008) Dent Mater 24:244

    Article  CAS  Google Scholar 

  48. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res 52:662

    Article  CAS  Google Scholar 

  49. Mendonca AF, Amoroso TL, Knabel SJ (1994) Appl Environ Microbiol 60:4009

    CAS  Google Scholar 

  50. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Takehara A, Sawaki T, Kokugan T, Shimizu M (1997) J Chem Eng Jpn 30:1034

    Article  CAS  Google Scholar 

  51. Cherrington CA, Hinton M, Mead GC, Chopra I (1991) Adv Microb Physiol 32:87

    Article  CAS  Google Scholar 

  52. Slonczewski JL (1992) ASM News 58:140

    Google Scholar 

  53. Zhang Y, Liu Y, Bao Y, Zhang HP (2010) Agric Sci China 9:911

    Article  CAS  Google Scholar 

  54. Oikawa K, Asada T, Yamamoto K, Wakabayashi H, Sasaki M, Sato M, Matsuda J (2000) J Health Sci 46:98

    Article  CAS  Google Scholar 

  55. Dizman B, Badger JC, Elasri MO, Mathias LJ (2007) Appl Clay Sci 38:57

    Article  CAS  Google Scholar 

  56. Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76

    Article  CAS  Google Scholar 

  57. Buckley JJ, Gai PL, Lee AF, Olivi L, Wilson K (2008) Chem Commun 14:4013

    Article  Google Scholar 

  58. Xu CW, Liu YY, Huang BB, Li H, Qin XY, Zhang XY, Dai Y (2011) Appl Surf Sci 257:8732

    Article  CAS  Google Scholar 

  59. Yamanaka M, Hara K, Kudo J (2005) Appl Environ Microbiol 71:7589

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Marine Scientific Research Foundation of Zhejiang University (2012HY001B), Qianjiang Program Foundation of Zhejiang Province (2011R10054), Scientific Research Foundation of Hangzhou Dianzi University (KYS205612029), and Scientific research project of Zhejiang Environmental Protection Bureau (2011B27). The authors are also thankful to Ms. Xiayun Zhang (Zhejiang Tianke High Technology Development Co. Ltd.) for her help in testing antibacterial activity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. T. Yao or M. S. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z.T., Chen, T., Li, H.Y. et al. Preparation, characterization, and antibacterial activity of shell waste loaded with silver. J Mater Sci 48, 8580–8587 (2013). https://doi.org/10.1007/s10853-013-7683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7683-0

Keywords

Navigation