Skip to main content
Log in

Electrospinning of PCL/natural rubber blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a thermoplastic/elastomeric binary blend of non-vulcanized natural rubber (NR) and polycaprolactone (PCL) was electrospun using polymer solutions consisting of varying proportions of PCL and NR. Specifically, an 8 % (w/v) NR/toluene solution was mixed with an 8 % (w/v) PCL/chloroform solution at proportions of 2, 15, 30, and 50 % (v/v). The morphological, thermal, and mechanical properties of the electrospun mats were investigated by scanning electron microscopy (SEM), differential scanning calorimetry, and uniaxial tensile tests. The SEM images demonstrated the production of micrometer- and sub-micrometer-sized fibers with no bead formation. Fibers with diameters ranging from 1.3 μm for samples with 0 % NR to 210 nm for samples containing 50 % NR were observed. Fibers with rough and smooth morphologies were observed, showing that the PCL/NR mats had phase-separated. The blend miscibility was evaluated by thermal analysis, which showed that blending did not improve the thermal stability of the systems. An investigation of the mechanical properties of the electrospun mats showed that adding NRL to the blend increased the tensile modulus, the ultimate elasticity, and the strain. Thus, non-vulcanized NR was successfully incorporated into electrospun mats, which exhibited useful mechanical properties that could be harnessed in biomaterials applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ayres CE, Jha BS, Sell SA, Bowlin GL, Simpson DG (2010) Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:20

    Article  CAS  Google Scholar 

  2. Pham QP, Sharma U, Mikos AG (2006) Tissue Eng 12:1197

    Article  CAS  Google Scholar 

  3. Zander NE, Orlicki JA, Rawlett AM, Beebe TP (2013) J Mater Sci Mater Med 24:179

    Article  CAS  Google Scholar 

  4. Balguid A, Mol A, van Marion MH, Bank RA, Bouten CVC, Baaijens FPT (2009) Tissue Eng Part A 15:437

    Article  CAS  Google Scholar 

  5. Zhang H, Lou SF, Williams GR, Branford-White C, Nie HL, Quan J, Zhu LM (2012) Int J Pharm 439:100

    Article  CAS  Google Scholar 

  6. Ma ZW, Kotaki M, Ramakrishna S (2005) J Membr Sci 265:115

    Article  CAS  Google Scholar 

  7. Yoshimatsu K, Ye L, Lindberg J, Chronakis IS (2008) Biosens Bioelectron 23:1208

    Article  CAS  Google Scholar 

  8. Son WK, Youk JH, Park WH (2006) Carbohydr Polym 65:430

    Article  CAS  Google Scholar 

  9. Taepaiboon P, Rungsardthong U, Supaphol P (2007) Eur J Pharm Biopharm 67:387

    Article  CAS  Google Scholar 

  10. Sant S, Hwang CM, Lee SH, Khademhosseini A (2011) J Tissue Regen Med 5:283

    Article  CAS  Google Scholar 

  11. Borg E, Frenot A, Walkenstrom P, Gisselfalt K, Gretzer C, Gatenholm P (2008) J Appl Polym Sci 108:491

    Article  CAS  Google Scholar 

  12. Frade MAC, Valverde RV, de Assis RVC, Coutinho-Netto J, Foss NT (2001) Int J Dermatol 40:238

    Article  CAS  Google Scholar 

  13. Neves WFP, Graeff CFD, Ferreira M, Mulato M, Bernardes MS, Coutinho-Netto J (2006) J Appl Polym Sci 100:702

    Article  Google Scholar 

  14. Neves-Junior WFP, Ferreira M, Alves MCO, Graeff CFO, Mulato M, Coutinho-Netto J, Bernardes MS (2006) Braz J Phys 36:586

    Article  Google Scholar 

  15. Davi CP, Galdino LFMD, Borelli P, Oliveira ON Jr, Ferreira M (2012) J Appl Polym Sci 125:2137

    Article  CAS  Google Scholar 

  16. Mendonca RJ, Mauricio VB, Teixeira LD, Lachat JJ, Coutinho-Netto J (2010) Phytother Res 24:764

    Google Scholar 

  17. Sithornkul S, Threepopnatkul P (2009) In: Yin YS, Wang X (eds) Multi-functional materials and structures II, Pts 1 and 2., p 1583

    Google Scholar 

  18. Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Tanaka Y (2005) Biomacromolecules 6:1858

    Article  CAS  Google Scholar 

  19. Rippel MM, Leite CAP, Lee LT, Galembeck F (2005) Colloid Polym Sci 283:570

    Article  CAS  Google Scholar 

  20. Sansatsadeekul J, Sakdapipanich J, Rojruthai P (2011) J Biosci Bioeng 111:628

    Article  CAS  Google Scholar 

  21. Magalhães ASG, Feitosa JPdA (1999) Polimeros 9:65

    Article  Google Scholar 

  22. Ferreira M, Mendonça RJ, Coutinho-Netto J, Mulato M (2009) Braz J Phys 39:564

    Article  CAS  Google Scholar 

  23. Kim GH, Shin HG, Cho WJ, Ha CS (2002) J Appl Polym Sci 86:1071

    Article  CAS  Google Scholar 

  24. Kolarik J, Fambri L, Slouf M, Konecny D (2005) J Appl Polym Sci 96:673

    Article  CAS  Google Scholar 

  25. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS (2003) Biomaterials 24:801

    Article  CAS  Google Scholar 

  26. Martins MA, Moreno RMB, McMahan CM, Brichta JL, Gonçalves PdS, Mattoso LHC (2008) Thermochim Acta 474:62

    Article  CAS  Google Scholar 

  27. Campos A, Marconcini JM, Martins-Franchetti SM, Mattoso LHC (2012) Polym Degrad Stab 97:1948

    Article  CAS  Google Scholar 

  28. Kaavessina M, Ali I, Elleithy RH, Al-Zahrani SM (2012) J Polym Res 19:9818

    Article  Google Scholar 

  29. de Oliveira LCS, de Arruda EJ, da Costa RB, Gonçalves PS, Delben A (2003) Thermochim Acta 398:259

    Article  Google Scholar 

  30. Tammaro L, Russo G, Vittoria V (2009) J Nanomater 2009:1

    Article  Google Scholar 

  31. Lizymol PP, Thomas S (1993) Polym Degrad Stab 41:59

    Article  CAS  Google Scholar 

  32. Del Gaudio C, Bianco A, Folin M, Baiguera S, Grigioni M (2009) J Biomed Mater Res 89A:1028

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. E. C. Venancio (UFABC) for the high voltage source. This work was supported by CEM-UFABC, Embrapa Instrumentação Agropecuária, CNPq (471709/2012-3) and Program-CAPES Rede Nanobiotec-Brasil (Edital CAPES04/CII-2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariselma Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L.M.M., Mattoso, L.H.C. & Ferreira, M. Electrospinning of PCL/natural rubber blends. J Mater Sci 48, 8501–8508 (2013). https://doi.org/10.1007/s10853-013-7667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7667-0

Keywords

Navigation