Skip to main content
Log in

Ce3+-doped Lu2Si2O7 luminescent fibers derived from electrospinning: facile preparation and flexible fiber molding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-dimensional Lu2Si2O7:Ce3+ (LPS:Ce) luminescent fibers were prepared by the sol–gel process combined with electrospinning with polyvinyl butyral as polymer in this study. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, thermogravimetric and differential scanning calorimetry, Fourier transform infrared spectroscopy, photoluminescence, and kinetic decays were used to characterize the resulting samples. After calcinated at 1200 °C, pure crystalline phase of Lu2Si2O7 was obtained with well maintenance of the fiber morphology. The excitation and emission curves of LPS:Ce samples are influenced by cerium-doping concentrations. LPS:0.5%Ce fibers show the most intense emission among the samples. A fast decay time of tens of nanosecond was also observed in LPS:Ce fibers. Furthermore, LPS:0.5%Ce powders and Y co-doped LPS:0.5%Ce fibers were also prepared in a similar way for comparison. As a result, LPS:0.5%Ce fibers present a much stronger emission and higher quantum efficiency than that of LPS:0.5%Ce powders, and a close efficiency compared with Y0.8Lu1.2Si2O7:0.5%Ce fibers. In addition, a facile and efficient fiber molding process can be realized to assemble one-dimensional LPS:Ce fibers into three-dimensional (3D) fibers structures with different shapes like bracelet and spool. Such 3D fiber structures are dense enough and well-shaped even if after high temperature calcination. The high performance LPS:Ce fibers and LPS:Ce 3D fibers may have great potential applications for luminescent clad sensors, optoelectronic devices, or scintillating detectors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pidol L, Viana B, Kahn-Harari A, Ferrand B, Dorenbos P, Van Eijk C (2005) Nucl Instrum Methods A 537:256

    Article  CAS  Google Scholar 

  2. Feng H, Ding D, Li H, Lu S, Pan S, Chen X et al (2011) J Alloy Compd 509:3855

    Article  CAS  Google Scholar 

  3. Pidol L, Guillot-Noël O, Kahn-Harari A, Viana B, Pelenc D, Gourier D (2006) J Phys Chem Solids 67:643

    Article  CAS  Google Scholar 

  4. Yan C, Zhao G, Hang Y, Zhang L, Xu J (2005) J Cryst Growth 281:411

    Article  CAS  Google Scholar 

  5. Pidol L, Viana B, Kahn-Harari A, Galtayries A, Bessiere A, Dorenbos P (2004) J Appl Phys 95:7731

    Article  CAS  Google Scholar 

  6. Gu Y, Zhang Q, Wang H, Li Y (2011) J Mater Chem 21:17790

    Article  CAS  Google Scholar 

  7. Xie JB, Hsieh YL (2003) J Mater Sci 38:2125.doi:10.1023/A:1023763727747

    Article  CAS  Google Scholar 

  8. Li W, Cao CY, Chen CQ, Zhao Y, Song WG, Jiang L (2011) Chem Commun 47:3619

    Article  CAS  Google Scholar 

  9. Sill TJ, Von Recum HA (2008) Biomaterials 29:1989

    Article  CAS  Google Scholar 

  10. Lei S, Chen D, Chen Y (2011) Nanotechnology 22. doi:10.1088/0957-4484/22/26/265504

  11. Ramakrishna S, Jose R, Archana PS et al (2010) J Mater Sci 45:6283. doi:10.1007/s10853-010-4509-1

    Article  CAS  Google Scholar 

  12. Wu H, Sun Y, Lin D, Zhang R, Zhang C, Pan W (2009) Adv Mater 21:227

    Article  Google Scholar 

  13. Zucchelli A, Focarete ML, Gualandi C, Ramakrishna S (2011) Polym Adv Technol 22:339

    Article  CAS  Google Scholar 

  14. Hu G, Meng X, Feng X, Ding Y, Zhang S, Yang M (2007) J Mater Sci 42:7162.doi:10.1007/s10853-007-1609-7

    Article  CAS  Google Scholar 

  15. Hou Z, Li C, Yang J et al (2009) J Mater Chem 19:2737

    Article  CAS  Google Scholar 

  16. Suryamas AB, Munir MM, Iskandar F, Okuyama K (2009) J Appl Phys 105:4311

    Article  Google Scholar 

  17. Huang Z, Huang S, Ou G, Pan W (2012) Nanoscale 4:5065

    Article  CAS  Google Scholar 

  18. Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) J Phys Chem B 113:9741

    Article  CAS  Google Scholar 

  19. Wang Y, Sui Y, Cheng J, Wang X, Su W, Liu X et al (2010) J Phys Chem C 114:5174

    Article  CAS  Google Scholar 

  20. Su Z, Li J, Li Q, Ni T, Wei G (2012) Carbon 50:5605

    Article  CAS  Google Scholar 

  21. Hou Z, Yang P, Li C, Wang L, Lian H, Quan Z et al (2008) Chem Mater 20:6686

    Article  CAS  Google Scholar 

  22. Ohashi Y, Yasui N, Yokota Y, Yoshikawa A, Den T (2013) Appl Phys Lett 102. doi:10.1063/1.4790295

  23. Song H, Yu H, Pan G, Bai X, Dong B, Zhang XT et al (2008) Chem Mater 20:4762

    Article  CAS  Google Scholar 

  24. Lyons WB, Fitzpatrick C, Flanagan C, Lewis E (2004) Sens Actuators A 115:267

    Article  CAS  Google Scholar 

  25. Lee KH, Lee BI, You JH, Byeon SH (2010) Chem Commun 46:1461

    Article  CAS  Google Scholar 

  26. Dhanaraj J, Jagannathan R, Kutty T, Lu CH (2001) J Phys Chem B 105:11098

    Article  CAS  Google Scholar 

  27. Leung LH, Fan S, Naguib HE (2012) J Polym Sci Pol Phys 50:242

    Article  CAS  Google Scholar 

  28. Sambaer W, Zatloukal M, Kimmer D (2011) Chem Eng Sci 66:613

    Article  CAS  Google Scholar 

  29. Sun B, Long YZ, Yu F, Li MM, Zhang HD, Li WJ et al (2012) Nanoscale 4:2134

    Article  CAS  Google Scholar 

  30. Badrossamay MR, Mcllwee HA, Goss JA, Parker KK (2010) Nano Lett 10:2257

    Article  CAS  Google Scholar 

  31. Zhou X, Zhao Y, Cao X, Xue Y, Xu D, Jiang L et al (2008) Mater Lett 62:470

    Article  CAS  Google Scholar 

  32. Szupryczynski P, Melcher CL, Spurrier MA, Carey AA, Maskarinec MP, Chakoumakos B et al (2005) In: IEEE nuclear science symposium conference record, vol 1–5.

  33. De Souza LKC, Zamian JR, da Rocha Filho GN, Soledade LEB, dos Santos IMG, Souza AG et al (2009) Dyes Pigments 81:187

    Article  Google Scholar 

  34. Diaz M, Pecharroman C, Del Monte F, Sanz J, Iglesias J, Moya JS et al (2005) Chem Mater 17:1774

    Article  CAS  Google Scholar 

  35. Hofmeister A, Chopelas A (1991) Phys Chem Miner 17:503

    Article  CAS  Google Scholar 

  36. Sokolnicki J, Guzik M (2009) Opt Mater 31:826

    Article  CAS  Google Scholar 

  37. Pidol L, Viana B, Galtayries A, Dorenbos P (2005) Phys Rev B 72. doi:10.1103/PhysRevB.72.125110

  38. Blasse G, Schipper W, Hamelink JJ (1991) Inorg Chim Acta 189:77

    Article  CAS  Google Scholar 

  39. Suzuki H, Tombrello T, Melcher C, Schweitzer J (1992) Nucl Instrum Methods A 320:263

    Article  Google Scholar 

  40. Ren G, Qin L, Lu S, Li H (2004) Nucl Instrum Methods A 531:560

    Article  CAS  Google Scholar 

  41. deMello JC, Wittmann HF, Friend RH (1997) Adv Mater 9:230

    Article  CAS  Google Scholar 

  42. Pålsson LO, Monkman AP (2002) Adv Mater 14:757

    Article  Google Scholar 

  43. Robbins DJ, Cockayne B, Lent B, Duckworth CN, Glasper JL (1979) Phys Rev B 19:1254

    Article  CAS  Google Scholar 

  44. Zhang K, Liu HZ, Wu YT, Hu WB (2008) J Inorg Mater 23:1045

    Article  CAS  Google Scholar 

  45. Xie JJ, Lin T, Shi Y, Song GX, Wu WP (2010) J Chin Ceram Soc 10:1931

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Lab of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramics (No. O81GS1181G), and National Natural Science Foundation of China (No. 91022028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Q., Liu, Q., Zhuang, J. et al. Ce3+-doped Lu2Si2O7 luminescent fibers derived from electrospinning: facile preparation and flexible fiber molding. J Mater Sci 48, 8471–8482 (2013). https://doi.org/10.1007/s10853-013-7664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7664-3

Keywords

Navigation