Skip to main content

Advertisement

Log in

Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nanotopography of biomedical implants is known to play a pivotal role in the cell–implant interactions for successful clinical implantations. Recently, due to the morphological similarity to natural extracellular matrix, titania (TiO2) nanofibers/nanowires have shown great promise as a preferred platform in the field of biomedical implants. In this study, we first review recent progress pertaining to fabrication techniques for producing TiO2 nanofibrous surface topographies. Subsequently, we outline the effect of this on cellular response, using several examples of current in vitro studies, noting that these remarkable results greatly support the potential use of such a surface as a substrate for implantation. However, further in vitro and in vivo studies will be required to realize their full potential in clinical use. Finally, we anticipate that the future direction in this field will be shaped by better analysis and understanding of cellular interactions with TiO2 nanowires/nanofibers surface structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brammer KS, Frandsen CJ, Jin S (2012) Trends Biotechnol 30:315

    CAS  Google Scholar 

  2. Brammer KS, Choi C, Frandsen CJ, Oh S, Jin S (2011) Acta Biomater 7:683

    CAS  Google Scholar 

  3. Zhang NA, Deng YL, Tai QD et al (2012) Adv Mater 24:2756

    CAS  Google Scholar 

  4. Lord MS, Foss M, Besenbacher F (2010) Nano Today 5:66

    CAS  Google Scholar 

  5. Webster TJ, Schadler LS, Siegel RW, Bizios R (2001) Tissue Eng 7:291

    CAS  Google Scholar 

  6. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) J Biomed Mater Res 51:475

    CAS  Google Scholar 

  7. Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ (2003) J Biomed Mater Res–Part A 67:1284

    Google Scholar 

  8. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Biomaterials 21:1803

    CAS  Google Scholar 

  9. Balasundaram G, Sato M, Webster TJ (2006) Biomaterials 27:2798

    CAS  Google Scholar 

  10. Miyauchi T, Yamada M, Yamamoto A et al (2010) Biomaterials 31:3827

    CAS  Google Scholar 

  11. Mozumder MS, Zhu J, Perinpanayagam H (2011) Biomed Mater 6:035009

    Google Scholar 

  12. Dinan B, Gallego-Perez D, Lee H, Hansford D, Akbar SA (2013) Ceram Int 39:5949

    CAS  Google Scholar 

  13. Chen ZX, Takao Y, Wang WX, Matsubara T, Ren LM (2009) Biomed Mater 4:065003

    CAS  Google Scholar 

  14. Tavangar A, Tan B, Venkatakrishnan K (2011) Acta Biomater 7:2726

    CAS  Google Scholar 

  15. Wang X, Gittens RA, Song R et al (2012) Acta Biomater 8:878

    CAS  Google Scholar 

  16. Sheikh FA, Kanjwal MA, Kim HY, Kim H (2010) Appl Surf Sci 257:296

    CAS  Google Scholar 

  17. Lai YK, Pan F, Xu C, Fuchs H, Chi LF (2013) Adv Mater 25:1682

    CAS  Google Scholar 

  18. Ercan B, Taylor E, Alpaslan E, Webster TJ (2011) Nanotechnology 22:11

    Google Scholar 

  19. Azad AM, Hershey R, Ali S, Goel V (2010) J Mater Res 25:1761

    CAS  Google Scholar 

  20. Oh S, Brammer KS, Li YS et al (2009) Proc Natl Acad Sci USA 106:2130

    CAS  Google Scholar 

  21. Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S (2009) Acta Biomater 5:3215

    CAS  Google Scholar 

  22. Oh S, Brammer KS, Moon K-S, Bae J-M, Jin S (2011) Mater Sci Eng C 31:873

    CAS  Google Scholar 

  23. Ou H-H, Lo S-L (2007) Sep Purif Technol 58:179

    CAS  Google Scholar 

  24. Wong CL, Tan YN, Mohamed AR (2011) J Environ Manag 92:1669

    CAS  Google Scholar 

  25. Nathan S et al (2011) J Heat Transfer 133:034002

    Google Scholar 

  26. Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA (2012) Ceram Int 38:4421

    CAS  Google Scholar 

  27. Das K, Bose S, Bandyopadhyay A (2009) J Biomed Mater Res A 90:225

    Google Scholar 

  28. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S (2006) J Biomed Mater Res A 78:97

    Google Scholar 

  29. Burns K, Yao C, Webster TJ (2009) J Biomed Mater Res Part A 88A:561

    CAS  Google Scholar 

  30. Brammer KS, Oh S, Frandsen CJ, Varghese S, Jin S (2010) Mater Sci Eng C 30:518

    CAS  Google Scholar 

  31. Smith BS, Yoriya S, Johnson T, Popat KC (2011) Acta Biomater 7:2686

    CAS  Google Scholar 

  32. Brammer KS, Oh S, Gallagher JO, Jin S (2008) Nano Lett 8:786

    CAS  Google Scholar 

  33. Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA (2009) Biomaterials 30:1268

    CAS  Google Scholar 

  34. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nano Lett 7:1686

    CAS  Google Scholar 

  35. Popat KC, Leoni L, Grimes CA, Desai TA (2007) Biomaterials 28:3188

    CAS  Google Scholar 

  36. Christenson EM, Anseth KS, van den Beucken L et al (2007) J Orthop Res 25:11

    CAS  Google Scholar 

  37. Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Biomed Mater 3:034002

    CAS  Google Scholar 

  38. Lu P, Ding B (2008) Nanotechnology 2:169

    CAS  Google Scholar 

  39. Yoo HS, Kim TG, Park TG (2009) Adv Drug Deliv Rev 61:1033

    CAS  Google Scholar 

  40. Yoshida R, Suzuki Y, Yoshikawa S (2005) J Solid State Chem 178:2179

    CAS  Google Scholar 

  41. Pramanik S, Pingguan-Murphy B, Abu Osman NA (2012) Sci Technol Adv Mater 13:043002

    Google Scholar 

  42. Price RL, Waid MC, Haberstroh KM, Webster TJ (2003) Biomaterials 24:1877

    CAS  Google Scholar 

  43. Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK (2009) J Biomater Appl 24:7

    CAS  Google Scholar 

  44. Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S (2011) Biomed Mater 6:015001

    Google Scholar 

  45. Ravichandran R, Liao S, Ng C, Chan CK, Raghunath M, Ramakrishna S (2009) World J Stem Cells 1:55

    Google Scholar 

  46. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) J Appl Phys 102:111101

    Google Scholar 

  47. Stevens MM, George JH (2005) Science 310:1135

    CAS  Google Scholar 

  48. Chang CH, Lee HC, Chen CC et al (2012) J Biomed Mater Res Part A 100A:1687

    CAS  Google Scholar 

  49. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007) Prog Mater Sci 52:699

    CAS  Google Scholar 

  50. Yoo S, Akbar SA, Sandhage KH (2004) Adv Mater 16:260

    CAS  Google Scholar 

  51. Lee H, Dregia S, Akbar S, Alhoshan M (2010) J Nanomater 2010:503186

    Google Scholar 

  52. Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325

    CAS  Google Scholar 

  53. Kao L-H, Lin H-K, Chuang F-J, Hsu W-T (2012) Mater Lett 82:64

    CAS  Google Scholar 

  54. Shin S-H, Purevdorj O, Castano O, Planell JA, Kim H-W (2012) J Tissue Eng. doi:10.1177/2041731412443530

    Google Scholar 

  55. Sill TJ, von Recum HA (2008) Biomaterials 29:1989

    CAS  Google Scholar 

  56. Cui WG, Zhou Y, Chang J (2010) Sci Technol Adv Mater 11:014108

    Google Scholar 

  57. Goh YF, Shakir I, Hussain R (2013) J Mater Sci 48:3027. doi:10.1007/s13391-013-3089-z

    CAS  Google Scholar 

  58. Ding B, Kim CK, Kim HY, Se MK, Park SJ (2004) Fiber Polym 5:105

    CAS  Google Scholar 

  59. Li D, Xia Y (2003) Nano Lett 3:555

    CAS  Google Scholar 

  60. Lee J-S, Lee Y-I, Song H, Jang D-H, Choa Y-H (2011) Curr Appl Phys 11:S210

    Google Scholar 

  61. Nuansing W, Ninmuang S, Jarernboon W, Maensiri S, Seraphin S (2006) Mater Sci Eng B 131:147

    CAS  Google Scholar 

  62. Khalil KA, Kim SW, Kim KW, Dharmaraj N, Kim HY (2011) Int J Appl Ceram Technol 8:523

    CAS  Google Scholar 

  63. Lee S-J, Cho N-I, Lee DY (2007) J Eur Ceram Soc 27:3651

    CAS  Google Scholar 

  64. Wang XK, Zhu JX, Yin L et al (2012) J Nanomater 2012:959578

    Google Scholar 

  65. Lantelme B, Dumon M, Mai C, Pascault JP (1996) J Non-Cryst Solids 194:63

    CAS  Google Scholar 

  66. Park S-J, Chase G, Jeong K-U, Kim H (2010) J Sol-Gel Sci Technol 54:188

    CAS  Google Scholar 

  67. Chen J-Y, Chen H-C, Lin J-N, Kuo C (2008) Mater Chem Phys 107:480

    CAS  Google Scholar 

  68. Chandrasekar R, Zhang LF, Howe JY, Hedin NE, Zhang Y, Fong H (2009) J Mater Sci 44:1198. doi:10.1007/s10853-008-3201-1

    CAS  Google Scholar 

  69. He GF, Cai YB, Zhao Y et al (2013) J Colloid Interface Sci 398:103

    CAS  Google Scholar 

  70. Tavangar A, Tan B, Venkatakrishnan K (2013) J Appl Phys 113:023102

    Google Scholar 

  71. Gong D, Grimes CA, Varghese OK et al (2001) J Mater Res 16:3331

    CAS  Google Scholar 

  72. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Electrochem Commun 7:505

    CAS  Google Scholar 

  73. Bauer S, Kleber S, Schmuki P (2006) Electrochem Commun 8:1321

    CAS  Google Scholar 

  74. Lim JH, Choi J (2007) Small 3:1504

    CAS  Google Scholar 

  75. Xue C, Zhang F, Chen S, Yin Y, Lin C (2011) Mater Sci Semicond Process 14:157

    CAS  Google Scholar 

  76. Roy P, Berger S, Schmuki P (2011) Angew Chem-Int Edit 50:2904

    CAS  Google Scholar 

  77. Su ZX, Zhou WZ (2011) J Mater Chem 21:8955

    CAS  Google Scholar 

  78. Low IM, Yam FK, Pang WK (2012) Mater Lett 87:150

    CAS  Google Scholar 

  79. Yuan Z-Y, Zhou W, Su B-L (2002) Chem Commun 7(11):1202

    Google Scholar 

  80. Pavasupree S, Suzuki Y, Yoshikawa S, Kawahata R (2005) J Solid State Chem 178:3110

    CAS  Google Scholar 

  81. Liu B, Boercker JE, Aydil ES (2008) Nanotechnology 19:7

    Google Scholar 

  82. Wang H, Liu Y, Zhong MY, Xu HM, Huang H, Shen H (2011) J Nanopart Res 13:1855

    CAS  Google Scholar 

  83. Xiaobo C (2009) Chin J Catal 30:839

    Google Scholar 

  84. Liu HW, Waclawik ER, Zheng ZF et al (2010) J Phys Chem C 114:11430

    CAS  Google Scholar 

  85. Yin H, Ding G, Gao B, Huang F, Xie X, Jiang M (2012) Mater Res Bull 47:3124

    CAS  Google Scholar 

  86. Dong X, Li YY, Lin ZW, Ge J, Qiu JB (2013) Appl Surf Sci 270:457

    CAS  Google Scholar 

  87. Wang XD, Shi J (2013) J Mater Res 28:270

    CAS  Google Scholar 

  88. Chen CY, Ozasa K, Katsumata K, Maeda M, Okada K, Matsushita N (2012) J Phys Chem C 116:8054

    CAS  Google Scholar 

  89. Daothong S, Songmee N, Thongtem S, Singjai P (2007) Scripta Mater 57:567

    CAS  Google Scholar 

  90. Huo KF, Zhang XM, Fu JJ et al (2009) J Nanosci Nanotechnol 9:3341

    CAS  Google Scholar 

  91. Peng XS, Chen AC (2004) J Mater Chem 14:2542

    CAS  Google Scholar 

  92. BJ Dinan (2012) Growth of Titania Nanowires by Thermal Oxidation (Electronic Thesis or Dissertation). http://etd.ohiolink.edu/. Accessed 25 Jul 2013

  93. Lin Z, Lee IS, Choi YJ, Noh IS, Chung SM (2009) Biomed Mater 4:015013

    Google Scholar 

  94. Barreiro MM, Grana DR, Kokubu GA, Luppo MI, Mintzer S, Vigna G (2010) Biomed Mater 5(2):25010

    CAS  Google Scholar 

  95. Hanawa T (2012) Sci Technol Adv Mater 13:064102

    Google Scholar 

  96. Harcuba P, Bačáková L, Stráský J, Bačáková M, Novotná K, Janeček M (2012) J Mech Behav Biomed Mater 7:96

    CAS  Google Scholar 

  97. Wang XJ, Li YC, Lin JG, Yamada Y, Hodgson PD, Wen CE (2008) Acta Biomater 4:1530

    CAS  Google Scholar 

  98. Choi SW, Zhang Y, Thomopoulos S, Xia YN (2010) Langmuir 26:12126

    CAS  Google Scholar 

  99. Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P (2004) Biomaterials 25:1187

    CAS  Google Scholar 

  100. de Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA (2008) Pharm Res 25:2357

    CAS  Google Scholar 

  101. Han Y, Zhou JH, Zhang L, Xu KW (2011) Nanotechnology 22:11

    Google Scholar 

  102. Vasilev K, Poh Z, Kant K, Chan J, Michelmore A, Losic D (2010) Biomaterials 31:532

    CAS  Google Scholar 

  103. Chen X-B, Li Y-C, Hodgson PD, Wen C (2009) Acta Biomater 5:2290

    CAS  Google Scholar 

  104. Ma JY, He XZ, Jabbari E (2011) Ann Biomed Eng 39:14

    CAS  Google Scholar 

  105. Meinel AJ, Kubow KE, Klotzsch E et al (2009) Biomaterials 30:3058

    CAS  Google Scholar 

  106. Murugan R, Ramakrishna S (2007) Tissue Eng 13:1845

    CAS  Google Scholar 

  107. Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD (2007) Biomaterials 28:2821

    CAS  Google Scholar 

  108. Zinger O, Zhao G, Schwartz Z et al (2005) Biomaterials 26:1837

    CAS  Google Scholar 

  109. Chen SJ, Yu HY, Yang BC (2013) J Biomed Mater Res Part A 101A:64

    CAS  Google Scholar 

  110. Morelli C, Barbanti-Brodano G, Ciannilli A, Campioni K, Boriani S, Tognon M (2007) J Biomed Mater Res Part A 83A:178

    CAS  Google Scholar 

  111. Brammer KS, Choi C, Frandsen CJ, Oh S, Johnston G, Jin S (2011) Acta Biomater 7:2697

    CAS  Google Scholar 

  112. Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC (2010) J Biomed Mater Res Part A 95A:350

    CAS  Google Scholar 

  113. Li J, Zhu W, Liu J, Liu X, Liu H (2012) Chin Sci Bull 57:2022

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Higher Education Malaysia (UM.C/HIR/MOHE/ENG/44) and Postgraduate Research Fund (Project No. PV102/2012A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Wen Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, A.W., Pingguan-Murphy, B., Ahmad, R. et al. Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review. J Mater Sci 48, 8337–8353 (2013). https://doi.org/10.1007/s10853-013-7659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7659-0

Keywords

Navigation