Skip to main content
Log in

Photocatalytic degradation of Rhodamine B using electrospun TiO2 and ZnO nanofibers: a comparative study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 and ZnO nanofibers were fabricated through a facile electrospinning method. The obtained nanofibers were characterized by a variety of analytical means including FESEM, TEM, SAED, XRD, UV–Vis, and PL. Compared with nanoparticles, nanofibers can be recycled more easily when they are used as photocatalysts. The photocatalytic activities of these two nanofibers were investigated and compared by evaluating the photodegradation of hazardous dye Rhodamine B. Although, ZnO nanofibrous photocatalyst exhibits better initial activity than TiO2 nanofibrous counterpart, its photocatalytic performance is inferior to that of the latter on the whole. The photo-instability arising from photocorrosion may be responsible for its rapid deterioration in activity. The difference in the photocatalytic properties between TiO2 and ZnO nanofibers was discussed, and a possible photodegradation mechanism of organic dyes in the presence of the nanofibrous photocatalyst was proposed. This work offers a direct insight into the comparison of photocatalysis of electrospun TiO2 and ZnO nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grant SB, Saphores JD, Feldman DL, Hamilton AJ, Fletcher TD, Cook PLM, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I (2012) Science 337:681

    Article  CAS  Google Scholar 

  2. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Nature 452:301

    Article  CAS  Google Scholar 

  3. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Appl Catal A 359:25

    Article  CAS  Google Scholar 

  4. Chong MN, Jin B, Chow CWK, Saint C (2010) Water Res 44:2997

    Article  CAS  Google Scholar 

  5. Wang JL, Xu LJ (2012) Crit Rev Environ Sci Technol 42:251

    Article  Google Scholar 

  6. Zhang LW, Mohamed HH, Dillert R, Bahnemann D (2012) J Photochem Photobiol C 3:263

    Article  Google Scholar 

  7. Nakata K, Ochiai T, Murakami T, Fujishima A (2012) Electrochim Acta 84:103

    Article  CAS  Google Scholar 

  8. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Energy Environ Sci 2:1231

    Article  Google Scholar 

  9. Zhang XW, Xu SY, Han GR (2009) Mater Lett 63:1761

    Article  CAS  Google Scholar 

  10. Liu HQ, Yang JX, Liang JH, Huang YX, Tang CY (2008) J Am Ceram Soc 91:1287

    Article  CAS  Google Scholar 

  11. Sarkar A, Shchukarev A, Leino AR, Kordas K, Mikkola JP, Petrov PO, Tuchina ES, Popov AP, Darvin ME, Meinke MC, Lademann J, Tuchin VV (2012) Nanotechnology 23:475711

    Article  Google Scholar 

  12. Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Mater Lett 91:170

    Article  CAS  Google Scholar 

  13. Jassby D, Budarz JF, Wiesner M (2012) Environ Sci Technol 46:6934

    Article  CAS  Google Scholar 

  14. Mazzarolo A, Lee K, Vicenzo A, Schmuki P (2012) Electrochem Commun 22:162

    Article  CAS  Google Scholar 

  15. Chu DW, Masuda Y, Ohji T, Kato K (2010) Langmuir 26:2811

    Article  CAS  Google Scholar 

  16. Wu HB, Hng HH, Lou XW (2012) Adv Mater 24:2567

    Article  CAS  Google Scholar 

  17. Kuo TJ, Lin CN, Kuo CL, Huang MH (2007) Chem Mater 19:5143

    Article  CAS  Google Scholar 

  18. Yu YX, Xu DS (2007) Appl Catal B 73:166

    Article  CAS  Google Scholar 

  19. Baruah S, Jaisai M, Dutta J (2012) Catal Sci Technol 2:918

    Article  CAS  Google Scholar 

  20. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2011) Text Res J 82:129

    Article  Google Scholar 

  21. Dai YQ, Liu WY, Formo E, Sun YM, Xia YN (2011) Polym Adv Technol 22:326

    Article  CAS  Google Scholar 

  22. Doh SJ, Kim C, Lee SG, Lee SJ, Kim H (2008) J Hazard Mater 154:118

    Article  CAS  Google Scholar 

  23. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) ACS Appl Mater Interface 1:1140

    Article  CAS  Google Scholar 

  24. Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP (2009) Mater Res Bull 44:312

    Article  CAS  Google Scholar 

  25. Li HP, Zhang W, Pan W (2011) J Am Ceram Soc 94:3184

    Article  CAS  Google Scholar 

  26. Zhang X, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Nanoscale 4:1707

    Article  CAS  Google Scholar 

  27. Chen YL, Chang YH, Huang JL, Chen I, Kuo CS (2012) J Phys Chem C 116:3857

    Article  CAS  Google Scholar 

  28. Singh P, Mondal K, Sharma A (2013) J Colloid Interface Sci 394:208

    Article  CAS  Google Scholar 

  29. Barka N, Qourzal S, Assabbane A, Nounah A, Ait-Ichou Y (2008) J Photochem Photobiol A 195:346

    Article  CAS  Google Scholar 

  30. Lu XF, Wang C, Wei Y (2009) Small 5:2349

    Article  CAS  Google Scholar 

  31. Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325

    Article  CAS  Google Scholar 

  32. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Chem Mater 19:6536

    Article  CAS  Google Scholar 

  33. Zhang W, Zhu R, Liu XZ, Liu B, Ramakrishna S (2009) Appl Phys Lett 95:043304

    Article  Google Scholar 

  34. Li D, Xia YN (2003) Nano Lett 3:555

    Article  CAS  Google Scholar 

  35. Park JY, Choi SW, Kim SS (2010) Nanotechnology 21:475601

    Article  Google Scholar 

  36. Mu JB, Shao CL, Guo ZC, Zhang ZY, Zhang MY, Zhang P, Chen B, Liu YC (2011) ACS Appl Mater Interface 3:590

    Article  CAS  Google Scholar 

  37. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Sol Energy Mater Sol Cells 77:65

    Article  CAS  Google Scholar 

  38. Liao YC, Xie CH, Liu Y, Chen H, Li HY, Wu J (2012) Ceram Int 38:4437

    Article  CAS  Google Scholar 

  39. Li YZ, Xie W, Hu XL, Shen GF, Zhou X, Xiang Y, Zhao XJ, Fang PF (2010) Langmuir 26:591

    Article  Google Scholar 

  40. Bandara J, Hadapangoda CC, Jayasekera WG (2004) Appl Catal B 50:83

    Article  CAS  Google Scholar 

  41. Xu J, Wang WZ, Shang M, Gao EP, Zhang ZJ, Ren J (2011) J Hazard Mater 196:426

    Article  CAS  Google Scholar 

  42. Choi SK, Kim S, Lim SK, Park H (2010) J Phys Chem C 114:16475

    Article  CAS  Google Scholar 

  43. Fu HB, Xu TG, Zhu SB, Zhu YF (2008) Environ Sci Technol 42:8064

    Article  CAS  Google Scholar 

  44. Gaya UI, Abdullah AH (2008) J Photochem Photobiol C 9:1

    Article  CAS  Google Scholar 

  45. Talebian N, Nilforoushan MR (2010) Thin Solid Films 518:2210

    Article  CAS  Google Scholar 

  46. Du PF, Song LX, Xiong J, Xi ZQ, Chen JJ, Gao LH, Wang NY (2011) J Nanosci Nanotechnol 11:7723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (Z4100798, LY12E02007), the Special Program for International S&T Cooperation Projects of Zhejiang Province (2012C24012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, P., Song, L., Xiong, J. et al. Photocatalytic degradation of Rhodamine B using electrospun TiO2 and ZnO nanofibers: a comparative study. J Mater Sci 48, 8386–8392 (2013). https://doi.org/10.1007/s10853-013-7649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7649-2

Keywords

Navigation