Skip to main content
Log in

Influence of upscaling accumulative roll bonding on the homogeneity and mechanical properties of AA1050A

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Accumulative roll bonding (ARB), as a method for production of ultrafine grained materials, is frequently supposed to be easily transferable to established industrial production lines. In literature, however, common sheet dimensions used for ARB in a laboratory scale are between 20 and 100 mm in width. In order to quantify the potential of upscaling the ARB process to a technological relevant level, sheets of AA1050A with an initial sheet width of 100–450 mm were accumulative roll bonded up to 8 cycles. In this regard, three different rolling mills of distinct dimensions were used for processing of the sheet material. The influence of process parameters and the reproducibility of the process, in terms of mechanical properties and homogeneity of the sheets, were studied by means of mechanical and microstructural characterization. Both appear to be largely independent on the sheet size and the rolling mill utilized for production. Only small deviations after the first cycles could be detected, vanishing in subsequent cycles due to the features of microstructural evolution. The finally obtained results indicate a high potential for industrial application of ARB and illustrate the possibility to upscale the process to a level necessary for that purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221

    Article  CAS  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrow IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  4. Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng A 340:265

    Article  Google Scholar 

  5. Lee SH, Saito Y, Tsuji N, Utsunomiya H, Sakai T (2002) Scr Mater 46:281

    Article  CAS  Google Scholar 

  6. Höppel HW, May J, Göken M (2004) Adv Eng Mater 6:781

    Article  Google Scholar 

  7. Tsuji N, Saito Y, Lee SH, Minamino Y (2003) Adv Eng Mater 5:338

    Article  CAS  Google Scholar 

  8. Tsuji N, Nakashima H, Yoshida F, Minamino Y (2002) Mater Sci Forum 396:423

    Article  Google Scholar 

  9. Kidmose J, Lu L, Winther G, Hansen N, Huang X (2012) J Mater Sci 47:7901. doi:10.1007/s10853-012-6718-2

    Article  CAS  Google Scholar 

  10. Frint P, Halle T, Wagner MFX, Hockauf M, Lampke T (2010) Mat.-wiss. u. Werkstofftech 41:814

    Article  CAS  Google Scholar 

  11. Hart EW (1967) Acta Metall 15:351

    Article  CAS  Google Scholar 

  12. Blum W, Zeng H (2009) Acta Mater 57:1966

    Article  CAS  Google Scholar 

  13. Tsuji N, Ueji R, Ito Y, Saito Y (2000). Proceedings of the 21th RISØ International Symposium on Materials Science, RISØ National Laboratory, Roskilde 607

  14. Scharnweber J, Skrotzki W, Oertel CG, Brokmeier HG, Höppel HW, Topic I, Jaschinski J (2010) Adv Eng Mater 12:989

    Article  CAS  Google Scholar 

  15. Valiev RZ, Alexandrov IV (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

  16. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71

    Article  Google Scholar 

  17. May J, Höppel HW, Göken M (2005) Scr Mater 53:189

    Article  CAS  Google Scholar 

  18. Li L, Nagai K, Fuxing Y (2008) Sci Technol Adv Mater 9:1

    Google Scholar 

  19. Vaidyanath LR, Nicholas MG, Milner DR (1959) Br Weld J 6:13

    Google Scholar 

  20. Soltani MA, Jamaati R, Toroghinejad MR (2012) Mater Sci Eng A 550:367

    Article  CAS  Google Scholar 

  21. Vaidyanath LR, Milner DR (1960) Br Weld J 7:513

    Google Scholar 

  22. Lukaschin ND, Borissow AP, Erlikh AI (1997) J Mater Process Technol 66:264

    Article  Google Scholar 

  23. Tylecote RF, Howd D, Furmidge JE (1958) Br Weld J 5:21

    CAS  Google Scholar 

  24. Cantalejos NA, Cusminsky G (1972) J Inst Metals 100:20

    CAS  Google Scholar 

  25. Skrotzki W, Hünsche I, Hüttenrauch J, Oertel CG, Brokmeier HG, Höppel HW, Topic I (2008) Texture Stress Microstruct 2008:1

  26. Lapovok R, McKenzie PW, Thomson PF, Semiatin SL (2007) Int J Mater Res 98:325

    CAS  Google Scholar 

  27. Topic I, Höppel HW, Staud D, Merklein M, Geiger M, Göken M (2008) Adv Eng Mater 10:1101

    Article  CAS  Google Scholar 

  28. Topic I, Höppel HW, Göken M (2008) J Mater Sci 43:7320. doi:10.1007/s10853-008-2754-3

    Article  CAS  Google Scholar 

  29. Maier V, Hausöl T, Schmidt CW, Böhm W, Nguyen H, Merklein M, Höppel HW, Göken M (2012) Metall Mater Trans A 43:3097

    Article  CAS  Google Scholar 

  30. Furukawa M, Utsonomiya A, Matsubara K, Horita Z, Langdon TG (2001) Acta Mater 49:3829

    Article  CAS  Google Scholar 

  31. Topic I, Höppel HW, Göken M (2007) Int J Mater Res 98:320

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the German Research Council (DFG) under project GO 741/19-1 and the Cluster of Excellence, Engineering of Advanced Materials’ Erlangen-Nuremberg, which is funded within the framework of its, Excellence Initiative’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ruppert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruppert, M., Böhm, W., Nguyen, H. et al. Influence of upscaling accumulative roll bonding on the homogeneity and mechanical properties of AA1050A. J Mater Sci 48, 8377–8385 (2013). https://doi.org/10.1007/s10853-013-7648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7648-3

Keywords

Navigation