Skip to main content
Log in

Spectrally selective absorber coating from transition metal complex for efficient photothermal conversion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper–manganese oxide (CuMnO x ) thin films are proposed as efficient and thermally stable selective solar absorbers. The coatings were deposited on aluminum, stainless steel, and glass substrates by dip-coating method from the alcoholic solution of the Cu and Mn nitrate. An organic filmogen was introduced in order to get better adherence with the substrate hence to get uniform films even for larger substrates. The coated films were dried and subsequently heat-treated at 500 °C. X-ray diffraction spectra of the annealed film showed the formation of pure Cu–Mn oxide spinel structure (Cu1.5Mn1.5O4) in the film. FTIR spectra show complete removal of the organic species after thermal treatment at 500 °C. The solar absorptance and thermal emittance were calculated from the hemispherical reflectance spectra in the UV/Vis/NIR and IR range, respectively. The maximum visible absorptance with minimizing the infrared thermal emittance was optimized by controlling the thickness of the films, choosing substrates, and introducing a SiO2 overlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Duffie JA, Beckman WA (1991) Solar engineering of thermal processes, 2nd edn. Wiley, New York

    Google Scholar 

  2. Kennedy CE (2002) Review of mid- to high-temperature solar selective absorber materials. NREL/TP-520-31267, National Renewable Energy Laboratory, Golden, CO

  3. Kennedy CE, Price H (2005) Progress in development of high-temperature solar-selective coatings. In: Proceedings of ISEC, Orlando, Florida, USA

  4. Kanu SS, Binions R (2009) Thin films for solar control applications. Proc R Soc A 466:19. doi:10.1098/rspa.2009.0259

    Article  Google Scholar 

  5. Erben E, Tihanyl BA (1984) Solar-selective absorber coatings for high-temperature application. Ind Eng Chem Prod Res Dev 23:659. doi:10.1021/i300008a020

    Article  CAS  Google Scholar 

  6. Kraemer D, Poudel B, Feng HP, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10:532. doi:10.1038/nmat3013

    Article  CAS  Google Scholar 

  7. Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23:5410. doi:10.1002/adma.201102646

    Article  CAS  Google Scholar 

  8. Bhowmik K, Pramanik S, Medda SK, De G (2012) Covalently functionalized reduced graphene oxide by organically modified silica: a facile synthesis of electrically conducting black coatings on glass. J Mater Chem 22:24690. doi:10.1039/C2JM35429B

    Article  CAS  Google Scholar 

  9. Hog SW, Smith GG (1977) The unusual and useful optical properties of electrodeposited chrome-black films. J Phys D Appl Phys 10:1863. doi:10.1088/0022-3727/10/13/021

    Article  Google Scholar 

  10. Barshilia HC, Selvakumar N, Rajam KS, Biswas A (2008) Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings. J Appl Phys 103:023507 (1). doi:10.1063/1.2831364

    Google Scholar 

  11. Etherden N, Tesfamichael T, Niklasso GA, Wäckelgård E (2004) A theoretical feasibility study of pigments for thickness-sensitive spectrally selective paints. J Phys D Appl Phys 37:1115. doi:10.1088/0022-3727/37/7/026

    Article  CAS  Google Scholar 

  12. Lundha M, Blomb T, Wäckelgård E (2010) Antireflection treatment of thickness sensitive spectrally selective (TSSS) paints for thermal solar absorbers. Sol Energy 84:124. doi:10.1016/j.solener.2009.10.016

    Google Scholar 

  13. Sathiaraj TS, Thangaraj R, Sharbaty HA, Agnihotri OP (1991) Optical properties of selectively absorbing R.F. sputtered Ni–Al2O3 composite films. Thin Solid Films 195:33. doi:10.1016/0040-6090(91)90256-W

    Google Scholar 

  14. Tesfamichael T, Roos A (1998) Treatment of antireflection on tin oxide coated anodized aluminum selective absorber surface. Sol Energy Mater Sol Cells 54:213. doi:10.1016/S0927-0248(98)00073-7

    Google Scholar 

  15. Boström T, Wäckelgård E, Westin G (2003) Solution-chemical derived nickel–alumina coatings for thermal solar absorbers. Solar Energy 74:497. doi:10.1016/S0038-092X(03)00199-3

  16. Barshilia HC, Kumar P, Rajam KS, Biswas A (2011) Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Sol Energy Mater Sol Cells 95:1707. doi:10.1016/j.solmat.2011.01.034

  17. Vien TK, Sella C, Lafait J, Berthier S (1985) Pt–Al2O3 selective cermet coatings on super alloy substrates for photothermal conversion up to 600°C. Thin Solid Films 126:17. doi:10.1016/0040-6090(85)90169-5

    Google Scholar 

  18. Xinkang D, Cong W, Tianmin W, Long Z, Buliang C, Ning R (2008) Microstructure and spectral selectivity of Mo–Al2O3 solar selective absorbing coatings after annealing. Thin Solid Films 516:3971. doi:10.1016/j.tsf.2007.07.193

  19. Mastai Y, Polarz S, Antonietti M (2002) Silica–carbon nanocomposites—a new concept for the design of solar absorbers. Adv Funct Mater 12:197. doi:10.1002/1616-3028(200203

    Article  CAS  Google Scholar 

  20. Kaluža L, Vuk AŠ, Orel B, Dražič G, Pelicon P (2001) Structural and IR spectroscopic analysis of sol–gel processed CuFeMnO4 spinel and CuFeMnO4/silica films for solar absorbers. J Sol Gel Sci Technol 20:61. doi:10.1023/A:1008728717617

    Article  Google Scholar 

  21. Kaluža L, Orel B, Dražič G, Köhl M (2001) Sol–gel derived CuCoMnOx spinel coatings for solar absorbers: structural and optical properties. Sol Energy Mater Sol Cells 70:187. doi:10.1016/S0927-0248(01)00024-1

  22. Vince J, Vuk AŠ, Krašoveca UO, Orel B, Köhl M, Heck M (2003) Solar absorber coatings based on CoCuMnOx spinels prepared via the sol–gel process: structural and optical properties. Sol Energy Mater Sol Cells 79:313. doi:10.1016/S0927-0248(02)00457-9

  23. Barreraa E, Huerta L, Muhl S, Avila A (2005) Synthesis of black cobalt and tin oxide films by the sol–gel process: surface and optical properties. Sol Energy Mater Sol Cells 88:179. doi:10.1016/j.solmat.2004.03.010

  24. Bayón R, Vicente GS, Maffiotte C, Morales A (2008) Preparation of selective absorbers based on CuMn spinels by dip-coating method. Renew Energy 33:348. doi:10.1016/j.renene.2007.05.017

    Google Scholar 

  25. Bayón R, Vicente GS, Maffiotte C, Morales A (2008) Characterization of copper–manganese-oxide thin films deposited by dip-coating. Sol Energy Mater Sol Cells 92:1211. doi:10.1016/j.solmat.2008.04.011

    Google Scholar 

  26. Bayón R, Vicente GS, Morales A (2010) Durability tests and up-scaling of selective absorbers based on copper–manganese oxide deposited by dip-coating. Sol Energy Mater Sol Cells 94:998. doi:10.1016/j.solmat.2010.02.006

  27. Zhu D, Zhao S (2010) Chromaticity and optical properties of colored and black solar-thermal absorbing coatings. Sol Energy Mater Sol Cells 94:1630. doi:10.1016/j.solmat.2010.05.019

  28. Du M, Hao L, Mi J, Lv F, Liu X, Jiang L, Wang S (2011) Optimization design of Ti0.5Al0.5N/Ti0.25Al0.75N/AlN coating used for solar selective applications. Sol Energy Mater Sol Cells 95:1193. doi: 10.1016/j.solmat.2011.01.006

  29. Bittar A, Cochrane D, Caughley S, Vickeridge I (1997) Study of TiOxNy thin film selective surfaces produced by ion assisted deposition. J Vac Sci Technol A 15:223. doi:10.1116/1.580516

  30. Nunes C, Teixeira V, Prates ML, Barradas NP, Sequeira AD (2003) Graded selective coatings based on chromium and titanium oxynitride. Thin Solid Films 442:173. doi:10.1016/S0040-6090(03)00967-2

    Google Scholar 

  31. Selvakumar N, Barshilia HC (2012) Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Sol Energy Mater Sol Cells 98:1. doi:10.1016/j.solmat.2011.10.028

  32. Lazarov M, Raths P, Metzger H, Spirkl W (1995) Optical constants and film density of TiNxOy, solar selective absorbers. J Appl Phys 77:2133. doi:10.1063/1.358790

    Google Scholar 

  33. Maury F, Duminica FD (2010) TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition. Surf Coat Technol 205:1287. doi:10.1016/j.surfcoat.2010.08.112

    Google Scholar 

  34. Linga Raju CH, Rao JL, Reddy BCV, Brahmam KV (2007) Thermal and IR studies on copper doped polyvinyl alcohol. Bull Mater Sci 30:215. doi:10.1007/s12034-007-0038-1

    Article  Google Scholar 

  35. Geng QF, Zhao X, Gao XH, Liu G (2011) Sol-gel combustion-derived CoCuMnOx spinels as pigment for spectrally selective paints. J Am Ceram Soc 94:827. doi:10.1111/j.1551-2916.2010.04182.x

    Article  CAS  Google Scholar 

  36. Tang ZR, Kondrat SA, Dickinson C, Bartley JK, Carley AF, Taylor SH, Davies TE, Allix M, Rosseinsky MJ, Claridge JB, Xu Z, Romani S, Crudace MJ, Hutchings GJ (2011) Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catal Sci Technol 1:740. doi:10.1039/C1CY00064K

    Article  Google Scholar 

  37. George J, Sajeevkumar VA, Ramana KV, Sabapathya SN, Siddaramaiah (2012) Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles. J Mater Chem 22:22433. doi:10.1039/C2JM35235D

    Article  CAS  Google Scholar 

  38. Manna U, Patil S (2009) Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan. J Phys Chem B 113:9137. doi:10.1021/jp9025333

    Article  CAS  Google Scholar 

  39. De G, Licciulli A, Massaro C, Tapfer L, Catalano M, Battaglin G, Meneghini C, Mazzoldi P (1996) Silver nanocrystals in silica by sol–gel processing. J Non Cryst Solids 194:225. doi:10.1016/0022-3093(91)00511-F

  40. Das N, Chakraborty S, Biswas PK (2012) Novel polyvinyl alcohol based Cr(III)–Sn(IV) doped In(III) nitrate composite foam: synthesis, unit cell formulation and structure. RSC Adv 2:9181. doi:10.1039/C2RA20916K

    Google Scholar 

  41. Li X, Xu J, Zhou L, Wang F, Gao J, Chen C, Ning J, Ma H (2006) Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides. Catal Lett 110:255. doi:10.1007/s10562-006-0118-7

    Article  CAS  Google Scholar 

  42. Jarrige J, Mexmain J (1980) Propirietes du magganite de cuivre Cu1.5Mn1.5O4. Bull Soc Chim Fr 9

Download references

Acknowledgements

The research work of Unisalento has been performed in the framework of the project SOLAR—financially supported by the Italian Ministry of University and Research. The authors would like to thank prof. Sergio Fonti for the kind support in spectrophotometric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipto Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Diso, D., Franza, S. et al. Spectrally selective absorber coating from transition metal complex for efficient photothermal conversion. J Mater Sci 48, 8268–8276 (2013). https://doi.org/10.1007/s10853-013-7639-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7639-4

Keywords

Navigation