Skip to main content
Log in

High-temperature elastic moduli of thermoelectric SnTex y SiC nanoparticulate composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In waste heat recovery applications, thermoelectric (TE) generators are subjected to thermal gradients and thermal transients, creating mechanical stresses in the TE legs. Such stresses are functions of the elastic moduli of the TE material. For SnTex matrices (where x = 0.0 or 0.016) composite specimens with 0–4 vol% SiC nanoparticle (SiCNP) additions, the elastic moduli (Young’s modulus, shear modulus, and Poisson’s ratio) were measured by resonant ultrasound spectroscopy from room temperature (RT) to 663 K. The effects of matrix composition and the SiCNP additions on the RT intercepts and the slopes of the elastic modulus as a function of temperature are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bux SK, Fleurial JP, Kaner RB (2010) Chem Commun 46:8311

    Article  CAS  Google Scholar 

  2. Lu TJ, Fleck NA (1998) Acta Mater 46:4755

    Article  CAS  Google Scholar 

  3. Zhao LT, Lu TJ, Fleck NA (2000) J Mech Phys Solids 48:867

    Article  CAS  Google Scholar 

  4. Manson SS (1966) Thermal stress and low-cycle fatigue. McGraw Hill, New York

    Google Scholar 

  5. Kreith F (1973) Principles of heat transfer, 3rd edn. Harper and Row, New York

    Google Scholar 

  6. D’Angelo JJ, Case ED, Matchanov N, Wu C-I, Hogan TP, Barnard J, Cauchy C, Hendricks T, Kanatzidis MG (2011) J Electron Mater 40:2051

    Article  Google Scholar 

  7. Martin HC, Carey GF (1973) In: Introduction to finite element analysis. McGraw-Hill, New York

  8. Kaliakin VN (2002) In: Introduction to approximate solution techniques, numerical modeling, and finite element methods. Marcel Dekker, New York, p 437

  9. Fan X, Case ED, Baumann MJ (2012) J Mater Sci 47:6333. doi:10.1007/s10853-012-6556-2

    Article  CAS  Google Scholar 

  10. Case ED, Kim Y (1993) J Mater Sci 28:1885. doi:10.1007/BF00595762

    Article  Google Scholar 

  11. Chotard T, Soro J, Lemercier H, Huger M, Gault CJ (2008) Eur Ceram Soc 28:2129

    Article  CAS  Google Scholar 

  12. Pilchak AL, Ren F, Case ED, Timm EJ, Wu C-I, Hogan TP, Schock HJ (2007) Philos Mag 87:4567

    Article  CAS  Google Scholar 

  13. Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C, Lara-Curzio E, Trejo RM (2008) Acta Mater 56:5954

    Article  CAS  Google Scholar 

  14. Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin C-H, Kanatzidis MG (2009) Philos Mag 89:143

    Article  CAS  Google Scholar 

  15. Ren F, Case ED, Morrison AQ, Tafesse M, Baumann MJ (2009) Philos Mag 89:1163

    Article  CAS  Google Scholar 

  16. Case ED, Smyth JR, Monthei V (1981) J Am Ceram Soc 64:C24

    Article  Google Scholar 

  17. Wyckoff RWG (1963) Rocksalt crystal structures, 2nd edn. Interscience, New York, pp 85–237

  18. Rogacheva EI, Gorne GV, Zhigareva NK, Ivanova AB (1991) Inorg Mater 27:194

    Google Scholar 

  19. Ravinder D, Alivelumanga T (2001) Mater Lett 49:1

    Article  CAS  Google Scholar 

  20. Rao SS, Ravinder D (2003) Mater Lett 57:3802

    Article  Google Scholar 

  21. Ren F, Case ED, Timm EJ, Schock HJ (2007) Philos Mag 87:4907–4934

    Article  CAS  Google Scholar 

  22. Case ED, Smyth JR, Hunter O Jr (1981) Mater Sci Eng 51:175

    Article  CAS  Google Scholar 

  23. Ni JE, Case ED, Stewart R, Wu C-I, Hogan TP, Kanatzidis MG (2012) J Electron Mater 41:1153

    Article  CAS  Google Scholar 

  24. Hoang K, Desai K, Mahanti SD (2005) Phys Rev B 72:064102

    Article  Google Scholar 

  25. Ren F, Case ED, Timm EJ, Lara-Curzio E, Trejo RM (2010) Acta Mater 58:31

    Article  CAS  Google Scholar 

  26. Lawson WD (1951) J Appl Phys 22:1444

    Article  CAS  Google Scholar 

  27. Noda Y, Masumoto K, Ohba S, Saito Y, Toriumi K, Iwata Y, Shibuya I (1987) Acta Cryst 43:1443

    Google Scholar 

  28. Beattie AG (1969) J Appl Phys 40:4818

    Article  CAS  Google Scholar 

  29. Mariano AN, Chopra KL (1967) Appl Phys Lett 10:282

    Article  CAS  Google Scholar 

  30. Seddon T, Gupta SC, Isci C, Saunders GA (1976) J Mater Sci Lett 11:1756

    Article  CAS  Google Scholar 

  31. Cui JL, Qian X, Zhao XB (2003) J Alloys Compd 358:228

    Article  CAS  Google Scholar 

  32. Houston B, Strakna RE, Belson HS (1968) J Appl Phys 39:3913

    Article  CAS  Google Scholar 

  33. Belson HS, Houston B (1969) J Appl Phys 41:422

    Article  Google Scholar 

  34. Liu Y, Liang D, Zhang L (2010) J Electron Mater 39:246

    Article  CAS  Google Scholar 

  35. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press, Cambridge

    Google Scholar 

  36. Pei YZ, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ (2011) Adv Funct Mater 21:241

    Article  CAS  Google Scholar 

  37. Cook BA, Kramer MJ, Harringa JL, Han MK, Chung DY, Kanatzidis MG (2009) Adv Funct Mat 2009(19):1254

    Article  Google Scholar 

  38. Kosuga A, Uno M, Kurosaki K, Yamanaka S (2005) J Alloys Compd 387:52

    Article  CAS  Google Scholar 

  39. Kawaharada Y, Kurosaki K, Muta H, Uno M, Yamanaka S (2004) J Alloys Compd 381:9

    Article  CAS  Google Scholar 

  40. Schenk M, Dunog LTH (1998) Semicond Sci Technol 13:335

    Article  CAS  Google Scholar 

  41. Rice RW (1998) Porosity of ceramics. CRC Press, Boca Raton

    Google Scholar 

  42. Ni JE, Ren F, Case ED, Timm EJ (2009) Mater Chem Phys 118:459

    Article  CAS  Google Scholar 

  43. Schmidt RD, Case ED, Lehr GJ, Morelli DT (2013) Intermetallics 35:15

    Article  CAS  Google Scholar 

  44. Baughman RJ, Lefever RA (1969) Mater Res Bull 4:721

    Article  CAS  Google Scholar 

  45. Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-Curzio E (2012) Philos Mag 92:727

    Article  CAS  Google Scholar 

  46. Ravi V, Firdosy S, Caillat T, Lerch B, Calamino A, Pawlik R, Nathal M, Sechrist A, Buchhalter J, Nutt S (2008) In: El-Genk MS (ed) Proceedings of space technology and applications international forum—STAIF 2008, vol 969. American Institute of Physics Conference Proceedings, Albuquerque

  47. Hashin Z (1962) J Appl Mech 29(1):143–150

    Article  CAS  Google Scholar 

  48. Bedolla E, Lemus-Ruiz J, Contreras A (2012) Mater Des 38:91

    Article  CAS  Google Scholar 

  49. Couturier R, Ducret D, Merle P, Disson JP, Joubert P (1997) J Eur Ceram Soc 17:1861

    Article  CAS  Google Scholar 

  50. Halpin JC (1984) Primer on composite materials analysis, 2nd edn. Technomic Publishing Company, Lancaster

    Google Scholar 

  51. Carnahan RD (1968) J Am Ceram Soc 51:223

    Article  CAS  Google Scholar 

  52. Schreiber E, Soga N (1966) J Am Ceram Soc 49:342

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Energy, “Revolutionary Materials for Solid State Energy Conversion Center,” an Energy Frontiers Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic energy Sciences under award number DE-SC0001054. The authors also acknowledge the use of the equipment high-temperature RUS measurements through the Oak Ridge National Laboratory’s High Temperature Materials Laboratory User Program, which is sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R.D., Case, E.D., Ni, J.E. et al. High-temperature elastic moduli of thermoelectric SnTex y SiC nanoparticulate composites. J Mater Sci 48, 8244–8258 (2013). https://doi.org/10.1007/s10853-013-7637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7637-6

Keywords

Navigation