Abstract
The mechanical, optoelectronic, and thermodynamic properties of carbon silicon nitride spinel compound have been investigated using density functional theory. The exchange–correlation potential was treated with the local density approximation (LDA) and the generalized gradient approximation of Perdew–Burke and Ernzerhof (PBE-GGA). In addition, the Engel–Vosko generalized gradient approximation (EV-GGA) and the modified Becke–Johnson potential (TB-mBJ) were also applied to improve the electronic band structure calculations. The ground state properties, including lattice constants and bulk modulus, are in fairly good agreement with the available theoretical data. The elastic constants, Young’s modulus, shear modulus, and Poisson’s ratio have been determined by using the variation of the total energy with strain. From the elastic parameters, it is inferred that this compound is brittle in nature. The results of the electronic band structure show that CSi2N4 has a direct energy band gap (Γ–Γ). The TB-mBJ approximation yields larger fundamental band gaps compared to those of LDA, PBE-GGA, and EV-GGA. In addition, we have calculated the optical properties, namely, the real and the imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, and energy loss function for radiation up to 40.0 eV. Using the quasi-harmonic Debye model which considers the phononic effects, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for this compound were investigated for the first time.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zerr A, Riedel R, Sekine T, Lowther JE, Ching WY, Tanaka I (2006) Adv Mater (Weinheim, Germany) 18:2933 and references therein
Lowther JE (2011) Materials 4:1104
Ching WY, Rulis P (2006) Phys Rev B 73:045202 and references therein
Tanaka I, Oba F, Sekine T, Ito E, Kuba A, Tastumi K, Adach H, Yamamoto T (2002) J Mater Res 17:731
Mo SD, Ouyang LZ, Ching WY, Tanaka I, Koyama Y, Riedel R (1999) Phys Rev Lett 83:5046
Ching W-Y, Mo S-D, Ouyang L, Rulis P, Tanaka I, Yoshiya M (2002) J Am Ceram Soc 85:75
Zerr A, Schwarz M, Schmechel R, Kolb R, von Seggern H, Riedel R (2002) Acta Cryst A 58:C47
Leitch S, Moewes A, Ouyang L, Ching WY, Sekine T (2004) J Phys Condens Matter 16:6469
Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P, Boehler R (1999) Nature (London) 400:340
Zerr A, Scharz M, Serghiou G, Kroke E, Miehe G, Riedel R, Boehler R, Ger. Offen. (2000) DE 19855514 A1 (June, 8, 2000)
Jiang JZ, Kragh F, Frost DJ, Stahl K, Lindelov H (2001) J Phys. Condens Matter 13:L515
Jiang JZ, Lindelov H, Gerward L, Stahl K, Reico JM, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A, Frost DJ (2002) Phys Rev B 65:161202
Jiang JZ, Ståhl K, Berg RW, Frost DJ, Zhou TJ, Shi PX (2000) Europhys Lett 51(1):62
Riedel R, Zerr A, Kroke E, Schwarz M (2001) Ceram Trans 112:119
Ching WY, Mo S-D, Ouyang LZ (2001) Phys Rev B 63:245110
Tanaka I, Oba F, Ching W-Y (2001) Mater Integr 14:21
Oba F, Tatsumi K, Adachi H, Tanaka I (2001) Appl Phys Lett 78:1577
Oba F, Tatsumi K, Tanaka I, Adachi H (2002) J Am Ceram Soc 85:97
Serghiou G, Miehe G, Tschauner O, Zerr A, Boehler R (1999) J Chem Phys 111:4659
Soignard E, McMillan PF (2004) Chem Mater 16:3533
Sekine T, He H, Kobayashi T, Zhang M, Xu F (2000) Appl Phys Lett 76:3706
He JL, Guo LC, Yu DL, Liu RP, Tian YJ, Wang HT (2004) Appl Phys Lett 85:5571
Ching WY, Mo SD, Tanaka I, Yoshiya M (2001) Phys Rev B 63:064102
Lowther JE, Amkreutz M, Frauenheim T, Kroke E, Riedel R (2003) Phys Rev B 68:033201
Wang H, Chen Y, Kaneta Y, Iwata S (2007) Eur Phys B 59:155
Zhang XY, Chen ZW, Du HJ, Yang C, Ma MZ, He JL, Tian YJ, Liu RP (2008) J Appl Phys 103:083533
Chang YK, Hsieh HH, Pong WF, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF (1998) Phys Rev B 58:9018
Badzian A (2002) J Am Ceram Soc 85:16
Kroll P, Riedel R, Hoffman R (1999) Phys Rev B 60:3126
Ding Y-C, Chen M, Jiang M-H, Gao X-Y (2012) Phys B Condens Matter 407:4323
Sjöstedt E, Nordström L, Singh DJ (2000) Solid State Commun 114:15
Wong KM, Alay-e-Abbas SM, Shaukat A, Fang Y, Lei Y (2013) J Appl Phys 113:014304
Wong KM, Alay-e-Abbas SM, Fang Y, Shaukat A, Lei Y (2013) J Appl Phys 114:034901
Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k: an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz/Techn. Universität Wien, Wien
Engel E, Vosko SH (1993) Phys Rev B 47:13164
Tran F, Blaha P (2009) Rev Lett 102:226401
Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188
Ambrosch-Draxl C, Sofo JO (2006) Comput Phys Commun 175:1
Delin A, Eriksson AO, Ahuja R, Johansson B, Brooks MSS, Gasche T, Auluck S, Wills JM (1996) Phys Rev B 54:1673
Yu YP, Cardona M (1999) Fundamental of semiconductors physics and materials properties, 2nd edn. Springer, Berlin, p 233
Blanco MA, Francisco E, Luaña V (2004) Comput Phys Commun 185:57
Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244
Mehl MJ (1993) Phys Rev B 47:2493
Wallace DC (1972) Thermodynamics of crystals. Wiley, New York
Hill R (1952) Proc Phys Soc Lond A 65:349
Voigt W (1928) Lehrbuch der Kristallphysik. Teubner, Leipzig
Russ A, Angew A (1929) Math Phys 9:49
Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1990) J Appl Phys 84:4891
Frantsevich IN, Voronov FF, Bokuta SA (1983) Elastic constants and elastic moduli of metals and insulators: Handbook. In: Frantsevich IN (ed), Naukova Dumka, Kiev, p 60–180
Pugh SF (1954) Philos Mag 45:823
Pettifor DG (1992) Mater Sci Technol 8:345
Lawn BR, Wilshaw TR (1975) J Mater Sci 10:1049. doi:10.1007/BF00823224
Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago, p 16
Chung D, Buessem W (1967) J Appl Phys 38:2010
Scanlon DO, Watson GW (2011) Phys Chem Chem Phys 13:9667
Acknowledgements
Khenata, Bouhemadou, Alahmed, and Bin Omran acknowledge the financial support by the Deanship of Scientific Research at the King Saud University for funding the work through the research group Project No. RPG-VPP-088. The work of Khachai has been supported by the Algerian national research projects PNR (No. 8/0/627).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haddou, A., Khachai, H., Khenata, R. et al. Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study. J Mater Sci 48, 8235–8243 (2013). https://doi.org/10.1007/s10853-013-7636-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-013-7636-7