Advertisement

Journal of Materials Science

, Volume 48, Issue 23, pp 8235–8243 | Cite as

Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study

  • A. Haddou
  • H. Khachai
  • R. Khenata
  • F. Litimein
  • A. Bouhemadou
  • G. Murtaza
  • Z. A. Alahmed
  • S. Bin-Omran
  • B. Abbar
Article

Abstract

The mechanical, optoelectronic, and thermodynamic properties of carbon silicon nitride spinel compound have been investigated using density functional theory. The exchange–correlation potential was treated with the local density approximation (LDA) and the generalized gradient approximation of Perdew–Burke and Ernzerhof (PBE-GGA). In addition, the Engel–Vosko generalized gradient approximation (EV-GGA) and the modified Becke–Johnson potential (TB-mBJ) were also applied to improve the electronic band structure calculations. The ground state properties, including lattice constants and bulk modulus, are in fairly good agreement with the available theoretical data. The elastic constants, Young’s modulus, shear modulus, and Poisson’s ratio have been determined by using the variation of the total energy with strain. From the elastic parameters, it is inferred that this compound is brittle in nature. The results of the electronic band structure show that CSi2N4 has a direct energy band gap (ΓΓ). The TB-mBJ approximation yields larger fundamental band gaps compared to those of LDA, PBE-GGA, and EV-GGA. In addition, we have calculated the optical properties, namely, the real and the imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, and energy loss function for radiation up to 40.0 eV. Using the quasi-harmonic Debye model which considers the phononic effects, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for this compound were investigated for the first time.

Keywords

Bulk Modulus Debye Temperature Local Density Approximation Superhard Material Linearize Augmented Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Khenata, Bouhemadou, Alahmed, and Bin Omran acknowledge the financial support by the Deanship of Scientific Research at the King Saud University for funding the work through the research group Project No. RPG-VPP-088. The work of Khachai has been supported by the Algerian national research projects PNR (No. 8/0/627).

References

  1. 1.
    Zerr A, Riedel R, Sekine T, Lowther JE, Ching WY, Tanaka I (2006) Adv Mater (Weinheim, Germany) 18:2933 and references thereinGoogle Scholar
  2. 2.
    Lowther JE (2011) Materials 4:1104CrossRefGoogle Scholar
  3. 3.
    Ching WY, Rulis P (2006) Phys Rev B 73:045202 and references thereinGoogle Scholar
  4. 4.
    Tanaka I, Oba F, Sekine T, Ito E, Kuba A, Tastumi K, Adach H, Yamamoto T (2002) J Mater Res 17:731Google Scholar
  5. 5.
    Mo SD, Ouyang LZ, Ching WY, Tanaka I, Koyama Y, Riedel R (1999) Phys Rev Lett 83:5046CrossRefGoogle Scholar
  6. 6.
    Ching W-Y, Mo S-D, Ouyang L, Rulis P, Tanaka I, Yoshiya M (2002) J Am Ceram Soc 85:75CrossRefGoogle Scholar
  7. 7.
    Zerr A, Schwarz M, Schmechel R, Kolb R, von Seggern H, Riedel R (2002) Acta Cryst A 58:C47CrossRefGoogle Scholar
  8. 8.
    Leitch S, Moewes A, Ouyang L, Ching WY, Sekine T (2004) J Phys Condens Matter 16:6469CrossRefGoogle Scholar
  9. 9.
    Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P, Boehler R (1999) Nature (London) 400:340CrossRefGoogle Scholar
  10. 10.
    Zerr A, Scharz M, Serghiou G, Kroke E, Miehe G, Riedel R, Boehler R, Ger. Offen. (2000) DE 19855514 A1 (June, 8, 2000)Google Scholar
  11. 11.
    Jiang JZ, Kragh F, Frost DJ, Stahl K, Lindelov H (2001) J Phys. Condens Matter 13:L515CrossRefGoogle Scholar
  12. 12.
    Jiang JZ, Lindelov H, Gerward L, Stahl K, Reico JM, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A, Frost DJ (2002) Phys Rev B 65:161202CrossRefGoogle Scholar
  13. 13.
    Jiang JZ, Ståhl K, Berg RW, Frost DJ, Zhou TJ, Shi PX (2000) Europhys Lett 51(1):62CrossRefGoogle Scholar
  14. 14.
    Riedel R, Zerr A, Kroke E, Schwarz M (2001) Ceram Trans 112:119Google Scholar
  15. 15.
    Ching WY, Mo S-D, Ouyang LZ (2001) Phys Rev B 63:245110CrossRefGoogle Scholar
  16. 16.
    Tanaka I, Oba F, Ching W-Y (2001) Mater Integr 14:21Google Scholar
  17. 17.
    Oba F, Tatsumi K, Adachi H, Tanaka I (2001) Appl Phys Lett 78:1577CrossRefGoogle Scholar
  18. 18.
    Oba F, Tatsumi K, Tanaka I, Adachi H (2002) J Am Ceram Soc 85:97CrossRefGoogle Scholar
  19. 19.
    Serghiou G, Miehe G, Tschauner O, Zerr A, Boehler R (1999) J Chem Phys 111:4659CrossRefGoogle Scholar
  20. 20.
    Soignard E, McMillan PF (2004) Chem Mater 16:3533CrossRefGoogle Scholar
  21. 21.
    Sekine T, He H, Kobayashi T, Zhang M, Xu F (2000) Appl Phys Lett 76:3706CrossRefGoogle Scholar
  22. 22.
    He JL, Guo LC, Yu DL, Liu RP, Tian YJ, Wang HT (2004) Appl Phys Lett 85:5571CrossRefGoogle Scholar
  23. 23.
    Ching WY, Mo SD, Tanaka I, Yoshiya M (2001) Phys Rev B 63:064102CrossRefGoogle Scholar
  24. 24.
    Lowther JE, Amkreutz M, Frauenheim T, Kroke E, Riedel R (2003) Phys Rev B 68:033201CrossRefGoogle Scholar
  25. 25.
    Wang H, Chen Y, Kaneta Y, Iwata S (2007) Eur Phys B 59:155CrossRefGoogle Scholar
  26. 26.
    Zhang XY, Chen ZW, Du HJ, Yang C, Ma MZ, He JL, Tian YJ, Liu RP (2008) J Appl Phys 103:083533CrossRefGoogle Scholar
  27. 27.
    Chang YK, Hsieh HH, Pong WF, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF (1998) Phys Rev B 58:9018CrossRefGoogle Scholar
  28. 28.
    Badzian A (2002) J Am Ceram Soc 85:16CrossRefGoogle Scholar
  29. 29.
    Kroll P, Riedel R, Hoffman R (1999) Phys Rev B 60:3126CrossRefGoogle Scholar
  30. 30.
    Ding Y-C, Chen M, Jiang M-H, Gao X-Y (2012) Phys B Condens Matter 407:4323CrossRefGoogle Scholar
  31. 31.
    Sjöstedt E, Nordström L, Singh DJ (2000) Solid State Commun 114:15CrossRefGoogle Scholar
  32. 32.
    Wong KM, Alay-e-Abbas SM, Shaukat A, Fang Y, Lei Y (2013) J Appl Phys 113:014304CrossRefGoogle Scholar
  33. 33.
    Wong KM, Alay-e-Abbas SM, Fang Y, Shaukat A, Lei Y (2013) J Appl Phys 114:034901CrossRefGoogle Scholar
  34. 34.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k: an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz/Techn. Universität Wien, WienGoogle Scholar
  35. 35.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  36. 36.
    Tran F, Blaha P (2009) Rev Lett 102:226401CrossRefGoogle Scholar
  37. 37.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  38. 38.
    Ambrosch-Draxl C, Sofo JO (2006) Comput Phys Commun 175:1CrossRefGoogle Scholar
  39. 39.
    Delin A, Eriksson AO, Ahuja R, Johansson B, Brooks MSS, Gasche T, Auluck S, Wills JM (1996) Phys Rev B 54:1673CrossRefGoogle Scholar
  40. 40.
    Yu YP, Cardona M (1999) Fundamental of semiconductors physics and materials properties, 2nd edn. Springer, Berlin, p 233CrossRefGoogle Scholar
  41. 41.
    Blanco MA, Francisco E, Luaña V (2004) Comput Phys Commun 185:57CrossRefGoogle Scholar
  42. 42.
    Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244CrossRefGoogle Scholar
  43. 43.
    Mehl MJ (1993) Phys Rev B 47:2493CrossRefGoogle Scholar
  44. 44.
    Wallace DC (1972) Thermodynamics of crystals. Wiley, New YorkGoogle Scholar
  45. 45.
    Hill R (1952) Proc Phys Soc Lond A 65:349CrossRefGoogle Scholar
  46. 46.
    Voigt W (1928) Lehrbuch der Kristallphysik. Teubner, LeipzigGoogle Scholar
  47. 47.
    Russ A, Angew A (1929) Math Phys 9:49Google Scholar
  48. 48.
    Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1990) J Appl Phys 84:4891CrossRefGoogle Scholar
  49. 49.
    Frantsevich IN, Voronov FF, Bokuta SA (1983) Elastic constants and elastic moduli of metals and insulators: Handbook. In: Frantsevich IN (ed), Naukova Dumka, Kiev, p 60–180Google Scholar
  50. 50.
    Pugh SF (1954) Philos Mag 45:823Google Scholar
  51. 51.
    Pettifor DG (1992) Mater Sci Technol 8:345CrossRefGoogle Scholar
  52. 52.
    Lawn BR, Wilshaw TR (1975) J Mater Sci 10:1049. doi: 10.1007/BF00823224 CrossRefGoogle Scholar
  53. 53.
    Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago, p 16Google Scholar
  54. 54.
    Chung D, Buessem W (1967) J Appl Phys 38:2010CrossRefGoogle Scholar
  55. 55.
    Scanlon DO, Watson GW (2011) Phys Chem Chem Phys 13:9667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Haddou
    • 1
    • 2
  • H. Khachai
    • 1
    • 2
  • R. Khenata
    • 3
  • F. Litimein
    • 1
  • A. Bouhemadou
    • 4
  • G. Murtaza
    • 5
  • Z. A. Alahmed
    • 6
  • S. Bin-Omran
    • 6
  • B. Abbar
    • 7
  1. 1.Physics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel AbbèsAlgeria
  2. 2.Applied Materials Laboratory, Electronics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel AbbèsAlgeria
  3. 3.Laboratoire de Physique Quantique et de Modélisation MathématiqueUniversité de MascaraMascaraAlgeria
  4. 4.Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of ScienceUniversity of SetifSetifAlgeria
  5. 5.Materials Modeling Lab, Department of PhysicsIslamia College UniversityPeshawarPakistan
  6. 6.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Laboratoire de Modélisation et Simulation en Sciences des Matériaux, Physics DepartmentDjillali Liabès University of Sidi Bel-AbbèsSidi Bel AbbèsAlgeria

Personalised recommendations