Skip to main content
Log in

Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical, optoelectronic, and thermodynamic properties of carbon silicon nitride spinel compound have been investigated using density functional theory. The exchange–correlation potential was treated with the local density approximation (LDA) and the generalized gradient approximation of Perdew–Burke and Ernzerhof (PBE-GGA). In addition, the Engel–Vosko generalized gradient approximation (EV-GGA) and the modified Becke–Johnson potential (TB-mBJ) were also applied to improve the electronic band structure calculations. The ground state properties, including lattice constants and bulk modulus, are in fairly good agreement with the available theoretical data. The elastic constants, Young’s modulus, shear modulus, and Poisson’s ratio have been determined by using the variation of the total energy with strain. From the elastic parameters, it is inferred that this compound is brittle in nature. The results of the electronic band structure show that CSi2N4 has a direct energy band gap (ΓΓ). The TB-mBJ approximation yields larger fundamental band gaps compared to those of LDA, PBE-GGA, and EV-GGA. In addition, we have calculated the optical properties, namely, the real and the imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, and energy loss function for radiation up to 40.0 eV. Using the quasi-harmonic Debye model which considers the phononic effects, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for this compound were investigated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zerr A, Riedel R, Sekine T, Lowther JE, Ching WY, Tanaka I (2006) Adv Mater (Weinheim, Germany) 18:2933 and references therein

  2. Lowther JE (2011) Materials 4:1104

    Article  Google Scholar 

  3. Ching WY, Rulis P (2006) Phys Rev B 73:045202 and references therein

  4. Tanaka I, Oba F, Sekine T, Ito E, Kuba A, Tastumi K, Adach H, Yamamoto T (2002) J Mater Res 17:731

    CAS  Google Scholar 

  5. Mo SD, Ouyang LZ, Ching WY, Tanaka I, Koyama Y, Riedel R (1999) Phys Rev Lett 83:5046

    Article  CAS  Google Scholar 

  6. Ching W-Y, Mo S-D, Ouyang L, Rulis P, Tanaka I, Yoshiya M (2002) J Am Ceram Soc 85:75

    Article  CAS  Google Scholar 

  7. Zerr A, Schwarz M, Schmechel R, Kolb R, von Seggern H, Riedel R (2002) Acta Cryst A 58:C47

    Article  Google Scholar 

  8. Leitch S, Moewes A, Ouyang L, Ching WY, Sekine T (2004) J Phys Condens Matter 16:6469

    Article  CAS  Google Scholar 

  9. Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P, Boehler R (1999) Nature (London) 400:340

    Article  CAS  Google Scholar 

  10. Zerr A, Scharz M, Serghiou G, Kroke E, Miehe G, Riedel R, Boehler R, Ger. Offen. (2000) DE 19855514 A1 (June, 8, 2000)

  11. Jiang JZ, Kragh F, Frost DJ, Stahl K, Lindelov H (2001) J Phys. Condens Matter 13:L515

    Article  CAS  Google Scholar 

  12. Jiang JZ, Lindelov H, Gerward L, Stahl K, Reico JM, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A, Frost DJ (2002) Phys Rev B 65:161202

    Article  Google Scholar 

  13. Jiang JZ, Ståhl K, Berg RW, Frost DJ, Zhou TJ, Shi PX (2000) Europhys Lett 51(1):62

    Article  CAS  Google Scholar 

  14. Riedel R, Zerr A, Kroke E, Schwarz M (2001) Ceram Trans 112:119

    CAS  Google Scholar 

  15. Ching WY, Mo S-D, Ouyang LZ (2001) Phys Rev B 63:245110

    Article  Google Scholar 

  16. Tanaka I, Oba F, Ching W-Y (2001) Mater Integr 14:21

    CAS  Google Scholar 

  17. Oba F, Tatsumi K, Adachi H, Tanaka I (2001) Appl Phys Lett 78:1577

    Article  CAS  Google Scholar 

  18. Oba F, Tatsumi K, Tanaka I, Adachi H (2002) J Am Ceram Soc 85:97

    Article  CAS  Google Scholar 

  19. Serghiou G, Miehe G, Tschauner O, Zerr A, Boehler R (1999) J Chem Phys 111:4659

    Article  CAS  Google Scholar 

  20. Soignard E, McMillan PF (2004) Chem Mater 16:3533

    Article  CAS  Google Scholar 

  21. Sekine T, He H, Kobayashi T, Zhang M, Xu F (2000) Appl Phys Lett 76:3706

    Article  CAS  Google Scholar 

  22. He JL, Guo LC, Yu DL, Liu RP, Tian YJ, Wang HT (2004) Appl Phys Lett 85:5571

    Article  CAS  Google Scholar 

  23. Ching WY, Mo SD, Tanaka I, Yoshiya M (2001) Phys Rev B 63:064102

    Article  Google Scholar 

  24. Lowther JE, Amkreutz M, Frauenheim T, Kroke E, Riedel R (2003) Phys Rev B 68:033201

    Article  Google Scholar 

  25. Wang H, Chen Y, Kaneta Y, Iwata S (2007) Eur Phys B 59:155

    Article  CAS  Google Scholar 

  26. Zhang XY, Chen ZW, Du HJ, Yang C, Ma MZ, He JL, Tian YJ, Liu RP (2008) J Appl Phys 103:083533

    Article  Google Scholar 

  27. Chang YK, Hsieh HH, Pong WF, Lee KH, Dann TE, Chien FZ, Tseng PK, Tsang KL, Su WK, Chen LC, Wei SL, Chen KH, Bhusari DM, Chen YF (1998) Phys Rev B 58:9018

    Article  CAS  Google Scholar 

  28. Badzian A (2002) J Am Ceram Soc 85:16

    Article  CAS  Google Scholar 

  29. Kroll P, Riedel R, Hoffman R (1999) Phys Rev B 60:3126

    Article  CAS  Google Scholar 

  30. Ding Y-C, Chen M, Jiang M-H, Gao X-Y (2012) Phys B Condens Matter 407:4323

    Article  CAS  Google Scholar 

  31. Sjöstedt E, Nordström L, Singh DJ (2000) Solid State Commun 114:15

    Article  Google Scholar 

  32. Wong KM, Alay-e-Abbas SM, Shaukat A, Fang Y, Lei Y (2013) J Appl Phys 113:014304

    Article  Google Scholar 

  33. Wong KM, Alay-e-Abbas SM, Fang Y, Shaukat A, Lei Y (2013) J Appl Phys 114:034901

    Article  Google Scholar 

  34. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k: an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz/Techn. Universität Wien, Wien

    Google Scholar 

  35. Engel E, Vosko SH (1993) Phys Rev B 47:13164

    Article  CAS  Google Scholar 

  36. Tran F, Blaha P (2009) Rev Lett 102:226401

    Article  Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  38. Ambrosch-Draxl C, Sofo JO (2006) Comput Phys Commun 175:1

    Article  CAS  Google Scholar 

  39. Delin A, Eriksson AO, Ahuja R, Johansson B, Brooks MSS, Gasche T, Auluck S, Wills JM (1996) Phys Rev B 54:1673

    Article  CAS  Google Scholar 

  40. Yu YP, Cardona M (1999) Fundamental of semiconductors physics and materials properties, 2nd edn. Springer, Berlin, p 233

    Book  Google Scholar 

  41. Blanco MA, Francisco E, Luaña V (2004) Comput Phys Commun 185:57

    Article  Google Scholar 

  42. Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244

    Article  CAS  Google Scholar 

  43. Mehl MJ (1993) Phys Rev B 47:2493

    Article  CAS  Google Scholar 

  44. Wallace DC (1972) Thermodynamics of crystals. Wiley, New York

    Google Scholar 

  45. Hill R (1952) Proc Phys Soc Lond A 65:349

    Article  Google Scholar 

  46. Voigt W (1928) Lehrbuch der Kristallphysik. Teubner, Leipzig

    Google Scholar 

  47. Russ A, Angew A (1929) Math Phys 9:49

    Google Scholar 

  48. Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1990) J Appl Phys 84:4891

    Article  Google Scholar 

  49. Frantsevich IN, Voronov FF, Bokuta SA (1983) Elastic constants and elastic moduli of metals and insulators: Handbook. In: Frantsevich IN (ed), Naukova Dumka, Kiev, p 60–180

  50. Pugh SF (1954) Philos Mag 45:823

    CAS  Google Scholar 

  51. Pettifor DG (1992) Mater Sci Technol 8:345

    Article  CAS  Google Scholar 

  52. Lawn BR, Wilshaw TR (1975) J Mater Sci 10:1049. doi:10.1007/BF00823224

    Article  Google Scholar 

  53. Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago, p 16

    Google Scholar 

  54. Chung D, Buessem W (1967) J Appl Phys 38:2010

    Article  CAS  Google Scholar 

  55. Scanlon DO, Watson GW (2011) Phys Chem Chem Phys 13:9667

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Khenata, Bouhemadou, Alahmed, and Bin Omran acknowledge the financial support by the Deanship of Scientific Research at the King Saud University for funding the work through the research group Project No. RPG-VPP-088. The work of Khachai has been supported by the Algerian national research projects PNR (No. 8/0/627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murtaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddou, A., Khachai, H., Khenata, R. et al. Elastic, optoelectronic, and thermal properties of cubic CSi2N4: an ab initio study. J Mater Sci 48, 8235–8243 (2013). https://doi.org/10.1007/s10853-013-7636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7636-7

Keywords

Navigation