Skip to main content
Log in

Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports on the effect of the chemical composition on the glass structure, the coefficients of thermal expansion and the fluorescence properties of Sm3+-doped La2O3–Al2O3–SiO2-glasses. The silica concentration was varied between 50 and 70 mol% and the La2O3:Al2O3 ratio between 50:50 and 30:70. The glass formation and the densities are evaluated and FTIR reflectance spectra, coefficients of thermal expansion and fluorescence lifetimes are determined. It is shown that high SiO2 concentrations and low La2O3:Al2O3 ratios result in relatively high fluorescence lifetime (2.19 ms, 4G5/2) and low coefficients of thermal expansion (4.6 × 10−6/K). The coefficients of thermal expansion and the fluorescence lifetimes show a linear dependency on the ratio LaO3/2/(AlO3/2 + SiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hein J, Kaluza MC, Bödefeld R et al (2006) Lasers and nuclei. Springer, Berlin. doi:10.1007/3-540-30272-7_4

    Google Scholar 

  2. Siebold M, Hein J, Hornung M et al (2008) Appl Phys B 90:431. doi:10.1007/s00340-007-2907-0

    Article  CAS  Google Scholar 

  3. Hein J, Podleska S, Siebold M et al (2004) Appl Phys B 79:419. doi:10.1007/s00340-004-1586-3

    Article  CAS  Google Scholar 

  4. Ehrt D (2003) Curr Opin Solid State Mater Sci 7:135. doi:10.1016/S1359-0286(03)00049-4

    Article  CAS  Google Scholar 

  5. Siebold M, Hornung M, Boedefeld R et al (2008) Opt Lett 33:2770. doi:10.1364/OL.33.002770

    Article  CAS  Google Scholar 

  6. Koerner J, Vorholt C, Liebetrau H et al (2012) J Opt Soc Am B 29:2493

    Article  CAS  Google Scholar 

  7. Siebold M, Hornung M, Bock S et al (2007) Appl Phys B 89:543. doi:10.1007/s00340-007-2834-0

    Article  CAS  Google Scholar 

  8. Krupke W, Shinn M, Marion J et al (1986) J Opt Soc Am B 3:102

    Article  CAS  Google Scholar 

  9. Ballard S, Brown S, Browder J (1978) Appl Opt 17:1152. doi:10.1364/AO.17

    Article  CAS  Google Scholar 

  10. Campbell JH, Hayden JS, Marker A (2011) Int J Appl Glass Sci 2:3. doi:10.1111/j.2041-1294.2011.00044.x

    Article  CAS  Google Scholar 

  11. Hasselman DPH (1978) Ceramurgia Int 4:147. doi:10.1016/0390-5519(78)90028-5

    Article  Google Scholar 

  12. Dittmer M, Rüssel C (2012) J Biomed Mater Res B 100:463. doi:10.1002/jbm.b.31972

    Google Scholar 

  13. Ehrt D, Vu HT, Herrmann A, Voelksch G (2008) Adv Mater Res 39–40:231

    Article  Google Scholar 

  14. Hyatt MJ, Day DE (1987) J Am Ceram Soc 70:C283. doi:10.1111/j.1151-2916.1987.tb04901.x

    Article  Google Scholar 

  15. Erbe EM, Day DE (1990) J Am Ceram Soc 73:2708. doi:10.1111/j.1151-2916.1990.tb06750.x

    Article  CAS  Google Scholar 

  16. Shelby J, Minton S, Lord C, Tuzzolo M (1992) Phys Chem Glasses 33:93

    CAS  Google Scholar 

  17. Jander P, Brocklesby W (2004) IEEE J Quantum Electron 40:509. doi:10.1109/JQE.2004.826455

    Article  CAS  Google Scholar 

  18. Dejneka MJ, Hanson BZ, Crigler SG et al (2002) J Am Ceram Soc 85:1100

    Article  CAS  Google Scholar 

  19. Litzkendorf D, Grimm S, Schuster K et al (2012) Int J Appl Glass Sci 3:332. doi:10.1111/ijag.12006

    Article  Google Scholar 

  20. Florian P, Sadiki N, Massiot D, Coutures JP (2007) J Phys Chem B 111:9747

    Article  CAS  Google Scholar 

  21. Kohli J, Condrate R, Shelby J (1993) Phys Chem Glasses 34:81

    CAS  Google Scholar 

  22. Kohli J, Shelby J, Frye J (1992) Phys Chem Glasses 33:73

    CAS  Google Scholar 

  23. Marchi J, Morais DS, Schneider J et al (2005) J Non-Cryst Solids 351:863

    Article  CAS  Google Scholar 

  24. Pozdnyakova I, Sadiki N, Hennet L et al (2008) J Non-Cryst Solids 354:5337. doi:10.1016/j.jnoncrysol.2007.11.012

    Article  Google Scholar 

  25. Schaller T, Stebbins JF (1998) J Phys Chem B 102:10690

    Article  CAS  Google Scholar 

  26. Aronne A, Esposito S, Pernice P (1997) Mater Chem Phys 51:163

    Article  CAS  Google Scholar 

  27. Clayden NJ, Esposito S, Aronne A, Pernice P (1999) J Non-Cryst Solids 258:11

    Article  CAS  Google Scholar 

  28. Iftekhar S, Leonova E, Eden M (2009) J Non-Cryst Solids 355:991. doi:10.1016/j.jnoncrysol.2009.06.031

    Article  Google Scholar 

  29. Iftekhar S, Grins J, Eden M (2010) J Non-Cryst Solids 356:1043

    Article  CAS  Google Scholar 

  30. Iftekhar S, Grins J, Gunawidjaja PN, Eden M (2011) J Am Ceram Soc 94:2429. doi:10.1111/j.1551-2916.2011.04548.x

    Article  CAS  Google Scholar 

  31. Kang E-T, Yang T-Y, Hwang J-H (2011) J Korean Ceram Soc 48:127

    Article  CAS  Google Scholar 

  32. Lin S, Hwang C (1996) J Non-Cryst Solids 202:61. doi:10.1016/0022-3093(96)00138-X

    Article  CAS  Google Scholar 

  33. Lin S, Hwang C, Lee J (1996) J Mater Res 11:2641. doi:10.1557/JMR.1996.0332

    Article  CAS  Google Scholar 

  34. Shelby JE (1994) Key Eng Mater 94–95:1

    Article  Google Scholar 

  35. Shelby JE, Kohli JT (1990) J Am Ceram Soc 73:39

    Article  CAS  Google Scholar 

  36. Tanabe S, Hirao K, Soga N (1992) J Am Ceram Soc 75:503. doi:10.1111/j.1151-2916.1992.tb07833.x

    Article  CAS  Google Scholar 

  37. Yang HC, Lakshminarayana G, Zhou SF et al (2008) Opt Express 16:6731

    Article  CAS  Google Scholar 

  38. Yang H, Lakshminarayana G, Teng Y et al (2009) J Mater Res 24:1730

    Article  CAS  Google Scholar 

  39. Qian M, Yu C, Cheng J et al (2012) J Lumin 132:2634

    Article  CAS  Google Scholar 

  40. Loewenstein W (1954) Am Mineral 39:92

    CAS  Google Scholar 

  41. Layne C, Lowdermilk W, Weber M (1977) Phys Rev B 16:10. doi:10.1103/PhysRevB.16.10

    Article  CAS  Google Scholar 

  42. Orlovskii Y, Reeves R, Powell R et al (1994) Phys Rev B 49:3821. doi:10.1103/PhysRevB.49.3821

    Article  CAS  Google Scholar 

  43. Efimov A (1996) J Non-Cryst Solids 203:1. doi:10.1016/0022-3093(96)00327-4

    Article  CAS  Google Scholar 

  44. Huang C, Behrman E (1991) J Non-Cryst Solids 128:310. doi:10.1016/0022-3093(91)90468-L

    Article  CAS  Google Scholar 

  45. Tarte P (1967) Spectrochim Acta A 23:2127. doi:10.1016/0584-8539(67)80100-4

    Article  CAS  Google Scholar 

  46. Carnall W, Fields P, Rajnak K (1968) J Chem Phys 49:4424. doi:10.1063/1.1669893

    Article  CAS  Google Scholar 

  47. Herrmann A, Ehrt D (2008) J Non-Cryst Solids 354:916

    Article  CAS  Google Scholar 

  48. Blasse G, Grabmaier BC (1994) Luminescent Materials. Springer, Berlin and New York

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by the European Social Fund (ESF) through the Thuringian Ministry of Economy, Employment and Technology (Project Number 2011 FGR 0122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, S., Herrmann, A., Hein, J. et al. Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion. J Mater Sci 48, 8014–8022 (2013). https://doi.org/10.1007/s10853-013-7613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7613-1

Keywords

Navigation