Skip to main content
Log in

Sol–gel derived Ag-doped ZnO thin film for UV photodetector with enhanced response

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) photodetectors based on pure zinc oxide (ZnO) and Ag-doped ZnO (Ag:ZnO) thin films with different Ag doping contents (0.05, 0.15, 0.65, 1.30 and 2.20 %) have been prepared by sol–gel technique. Photoresponse characteristics of the prepared detectors have been studied for UV radiation of λ = 365 nm and intensity = 24 μW/cm2. The Ag:ZnO thin film-based photodetector having an optimum amount of 0.15 at. wt% Ag dopant exhibits a high photoconductive gain (K = 1.32 × 103) with relatively fast recovery (T 37 % = 600 ms) and minimal persistence in comparison to other prepared photodetectors. The incorporation of Ag dopant (≤0.15 %) at Zn lattice sites (Agzn) in ZnO creates acceptor levels in the forbidden gap, thereby reducing the value of dark current. Upon illumination with UV radiation, the photogenerated holes recombine with the captured electrons at the Agzn sites. The photogenerated electrons increase the concentration of conduction electrons, thereby giving an enhanced photoresponse for Ag:ZnO photodetector (0.15 % Ag). At higher dopant concentration (≥0.65 %), Ag incorporated at the interstitial sites of ZnO leads to the formation of deep energy levels below the conduction band along with increase in oxygen-related defects, thereby giving higher values of dark current. The incorporation of Ag at interstitial sites results in degradation of photoresponse along with the appearance of persistence in recovery of the photodetector in the absence of UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu ZQ, Deng H, Xie J, Li Y, Xu XT (2006) Appl Surf Sci 253:476

    Article  CAS  Google Scholar 

  2. Zhao M, Bao J, Fan X, Gu F, Guo Y, Zhang Y, Zhao M, Sha Y, Guo F, Li J (2009) Phys B 404:275

    Article  CAS  Google Scholar 

  3. Moon TH, Jeong MC, Lee W, Myoung JM (2005) Appl Surf Sci 240:280

    Article  CAS  Google Scholar 

  4. Lee YC, Hassan Z, Yam FK, Abdulla MJ, Ibrahim K, Barmawi M, Sugianto, Budiman M, Arifin P (2005) Appl Surf Sci 249:91

    Article  CAS  Google Scholar 

  5. Gupta V, Mansingh A (1996) J Appl Phys 80:1063

    Article  CAS  Google Scholar 

  6. Yadav HK, Sreenivas K, Gupta V (2010) J Appl Phys 107:044507

    Article  Google Scholar 

  7. Baltakesmez A, Tekmen S, Tuzemen S (2011) J Appl Phys 110:054502

    Article  Google Scholar 

  8. Chen KJ, Hung FY, Chang SJ, Younga SJ (2009) J Alloys Compd 479:674

    Article  CAS  Google Scholar 

  9. Mehan N, Gupta V, Sreenivas K, Mansingh A (2004) J Appl Phys 96:3134

    Article  CAS  Google Scholar 

  10. Basak D, Amin G, Mallik B, Paul GK, Sen SK (2003) J Cryst Growth 256:73

    Article  CAS  Google Scholar 

  11. Mridha S, Basak D (2006) Chem Phys Lett 427:62

    Article  CAS  Google Scholar 

  12. Ghosh T, Basak D (2011) Mater Res Bull 46:1975

    Article  CAS  Google Scholar 

  13. Kouklin N (2008) Adv Mater 20:2190

    Article  CAS  Google Scholar 

  14. Mandalapu LJ, Xiu FX, Yang Z, Liu JL (2007) Solid-State Electron 51:1014

    Article  CAS  Google Scholar 

  15. Fan J, Freer R (1995) J Appl Phys 77:4795

    Article  CAS  Google Scholar 

  16. Kanai Y (1991) Jpn J Appl Phys 30:2021

    Article  CAS  Google Scholar 

  17. Gruzintsev N, Volkov VT, Khodos II, Nikiforova TV, Koval’chuk MN (2002) Russ Microelectron 31:200

    Article  CAS  Google Scholar 

  18. Li Y, Zhao X, Fan W (2011) J Phys Chem C 115:3552

    Article  CAS  Google Scholar 

  19. Sagar P, Shishodia PK, Mehra RM (2007) Appl Surf Sci 253:5419

    Article  CAS  Google Scholar 

  20. Zeferino RS, Flores MB, Pal U (2011) J App Phys 109:014308

    Article  Google Scholar 

  21. Zheng YH, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei KM, Zhu JF (2008) J Phys Chem C 112:10773

    Article  CAS  Google Scholar 

  22. Blinks DJ, Grimes RW (1993) J Am Ceram Soc 76:2370

    Article  Google Scholar 

  23. Li Y, Yao B, Lu YM, Cong CX, Zhang ZZ, Gai YQ, Zheng CJ, Li BH, Wei ZP, Shen DZ, Fan XW, Xiao L, Xu SC, Liu Y (2007) Appl Phys Lett 91:021915

    Article  Google Scholar 

  24. Saha S, Mehan N, Sreenivas K, Gupta V (2009) Appl Phys Lett 95:071106

    Article  Google Scholar 

  25. Liu K, Yang B, Yan H, Fu Z, Wen M, Chen Y, Zuo J (2009) J Lumin 129:969

    Article  CAS  Google Scholar 

  26. Yadav HK, Shreenivas K, Katiyar RS, Gupta V (2007) J Phys D 40:6005

    Article  CAS  Google Scholar 

  27. Wei X, Man B, Xue C, Chen C, Liu M (2006) Jpn J Appl Phys 45:8586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Department of Science and Technology (DST), Government of India for granting research sponsored project. One of the authors (A.R.) is thankful to UGC for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Tomar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, A., Yadav, H.K., Gupta, V. et al. Sol–gel derived Ag-doped ZnO thin film for UV photodetector with enhanced response. J Mater Sci 48, 7994–8002 (2013). https://doi.org/10.1007/s10853-013-7611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7611-3

Keywords

Navigation