Skip to main content
Log in

Utilization of chitosan biopolymer to enhance fly ash-based geopolymer

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper investigates the enhancement of fly ash-based geopolymer with chitosan biopolymer. Unconfined compression and split tensile tests were carried out to investigate the effect of addition of small amount of N-carboxymethyl chitosan (0.05, 0.1, 0.15, and 0.2 wt% of fly ash) on the mechanical performance of fly ash-based geopolymer. Scanning electron microscopy (SEM) imaging was also conducted to study the microstructure of the chitosan enhanced fly ash-based geopolymer. The results indicated that the inclusion of N-carboxymethyl chitosan led to slight increase of the unconfined compressive strength and substantial increase of the tensile strength, the displacement at the peak tensile load and the pre-peak toughness, with the maximum increases at 0.1 wt% chitosan content. The SEM imaging indicated that the added N-carboxymethyl chitosan biopolymer coated and bridged the (geopolymerized) fly ash particles and led to the formation of a more condensed geopolymer network structure, thus enhancing the mechanical behavior of the geopolymer–biopolymer composite. However, when too much N-carboxymethyl chitosan was used, the excessive coating and encapsulation of un-reacted and partially hydrolyzed fly ash particles hindered their geopolymerization and adversely affected the mechanical behavior of the geopolymer–biopolymer composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meyer C (2009) Cem Concr Compos 31:601

    Article  CAS  Google Scholar 

  2. Hendriks CA, Worrell E, de Jager D, Blok K, Riemer P (2000) IEA Greenhouse Gas R&D Programme. http://www.ieaghg.org. Accessed 19 May 2013

  3. Davidovits J (1994) In: Metha PK (ed) Proceedings of V. Mohan Malhotra symposium: concrete technology, past, present and future, ACI SP-144, p 383

  4. Arm M (2003) KTH Land and Water Resources Engineering, Stockholm

  5. Malhotra VM (2000) In: Gjorv OE, Sakai K (eds) Concrete technology for a sustainable development in the 21st century. E&FN Spon, London, p 226

  6. McCaffrey R (2002) Global cement and lime magazine (Environmental Special Issue):15

  7. USEPA (2009) Wastes-resource conservation-reduce, reuse, recycle-construction & demolition materials. http://www.epa.gov/epawaste/conserve/imr/cdm/index.htm. Accessed 19 May 2013

  8. Li Z, Ding Z, Zhang Y (2004) Proceedings of international workshop on sustainable development and concrete technology. Beijing, China. p. 55

  9. Drechsler M, Graham A (2005) 48th Institute of Quarrying Conference, 12–15 Oct, 2005, Adelaide, SA

  10. Shi C, Fernandez-Jimenez A (2006) J Hazard Mater B137:1656

    Article  Google Scholar 

  11. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) J Mater Sci 42:2917. doi:10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  12. Majidi B (2009) Mater Technol 24(2):79

    CAS  Google Scholar 

  13. Li Z, Zhang Y, Zhou Z (2005) J Mater Civil Eng 17(6):624

    Article  CAS  Google Scholar 

  14. Pernica D, Reis PNB, Ferreira JAM, Louda P (2010) J Mater Sci 45:744. doi:10.1007/s10853-009-3994-6

    Article  CAS  Google Scholar 

  15. Zhao Q, Nair B, Rahimian T, Balaguru P (2007) J Mater Sci 42:3131. doi:10.1007/s10853-006-0527-4

    Article  CAS  Google Scholar 

  16. Zhang YJ, Li S, Xu DL, Wang BQ, Xu GM, Yang DF, Wang N, Liu HC, Wang YC (2010) J Mater Sci 45:1189. doi:10.1007/s10853-009-4063-x

    Article  CAS  Google Scholar 

  17. Giancaspro J, Balaguru P, Lyon R (2003) International Society of Offshore and Polar Engineering, ISOPE

  18. Bernal S, Gutierrez RD, Delvasto S, Rodriguez E (2010) Constr Build Mater 24:208

    Article  Google Scholar 

  19. Hammell JA, Balaguru P, Lyon R, Davidovits J (1999) Geopolymer ‘99 proceedings, p 155

  20. Comrie DC, Kriven WM (2003) Ceram Trans 153:211

    CAS  Google Scholar 

  21. Lin T, Jia D, He P, Wang M, Liang D (2008) Mater Sci Eng A 497:181

    Article  Google Scholar 

  22. Lin T, Jia D, He P, Wang M, He P, Liang D (2009) Bull Mater Sci 32(1):77

    Article  CAS  Google Scholar 

  23. Zhang Y, Sun W, Li Z (2006) J Mater Sci 41:2787. doi:10.1007/s10853-006-6293-5

    Article  CAS  Google Scholar 

  24. Zhang Y, Sun W, Li Z, Zhou X, Chau C (2008) Constr Build Mater 22:370

    Article  Google Scholar 

  25. Sun P, Wu HC (2008) Cem Concr Compos 30:29

    Article  Google Scholar 

  26. Dias DP, Thaumaturgo C (2005) Cem Concr Compos 27:49

    Article  CAS  Google Scholar 

  27. Li W, Xu J (2009) Mater Sci Eng A 505:178

    Article  Google Scholar 

  28. Balaguru PN, Shah SP (1992) Fiber-reinforced cement composites. McGraw-Hill, New York

    Google Scholar 

  29. Metaxa ZS, Konsta-Gdoutos MS, Shah SP (2010) Transp Res Record: J Transp Res B 2142:114

    Article  CAS  Google Scholar 

  30. MacKenzie KJD, Bolton MJ (2009) J Mater Sci 44:2851. doi:10.1007/s10853-009-3377-z

    Article  CAS  Google Scholar 

  31. Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng R 49:89

    Article  Google Scholar 

  32. Groert N (2007) Mater Today 10:28

    Article  Google Scholar 

  33. Ashton HC (2010) In: Gupta RK, Kennel E, Kim KJ (eds) Polymer nanocomposites handbook. CRC Press, Boca Raton, p 21

  34. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194

    Article  CAS  Google Scholar 

  35. Yazdanbakhsh A, Grasley Z, Tyson B, Al-Rub RKA (2010) Transp Res Record: J Transp Res B 2142:89

    Article  CAS  Google Scholar 

  36. Zhang YJ, Wang YC, Xu DL, Li S (2010) Mater Sci Eng A 527:6574

    Article  Google Scholar 

  37. Hussain M, Varley RJ, Cheng YB, Simon GP (2004) J Mater Sci 39:4721. doi:10.1023/B:JMSC.0000034180.35216.ba

    Article  CAS  Google Scholar 

  38. Hussain M, Varely R, Cheng YB, Mathys Z, Simon GP (2005) J Appl Polym Sci 96:112

    Article  CAS  Google Scholar 

  39. Ferone C, Roviello G, Colangelo F, Cioffi R, Tarallo O (2013) Appl Clay Sci 73:42

    Article  CAS  Google Scholar 

  40. Shrotri K, Langner A, Varela B (2005) Geopolymers 2005, Saint-Quentin, France, CD-ROM proceedings

  41. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  42. Yu SH, Chen S (2009) Encyclopedia of inorganic chemistry. doi:10.1002/0470862106.ia353

    Google Scholar 

  43. Espinosa HD, Rim JE, Barthelat F, Buehler MJ (2009) Prog Mater Sci 54:1059

    Article  CAS  Google Scholar 

  44. Dunlop JWC, Fratzl P (2010) Ann Rev Mater Res 40:1

    Article  CAS  Google Scholar 

  45. Mourya VK, Inamdar NN, Tiwari A (2010) Adv Mat Lett 1:11

    Article  CAS  Google Scholar 

  46. Mourya VK, Inamdar NN (2008) React Funct Polym 68:1013

    Article  CAS  Google Scholar 

  47. Pillai CKS, Paul W, Sharma CP (2009) Prog Polym Sci 34:641

    Article  CAS  Google Scholar 

  48. De Abreu FR, Campana-Filho SP (2009) Carbohydr Polym 7:214

    Article  Google Scholar 

  49. Al-Oraimi SK, Seibi AC (1995) Compos Struct 32:165

    Article  Google Scholar 

  50. Kriker A, Debicki G, Bali A, Khenfer MM, Chabannet M (2005) Cem Concr Compos 27:554

    Article  CAS  Google Scholar 

  51. Li Z, Wang L, Wang X (2006) Compos A 37:497

    Article  Google Scholar 

  52. De Gutiérrez RM, Díaz LN, Delvasto S (2005) Cem Concr Compos 27:593

    Article  Google Scholar 

  53. Shchipunov YA (2003) J Colloid Interface Sci 268:68

    Article  CAS  Google Scholar 

  54. Shchipunov YA, Karpenko TY (2004) Langmuir 20:3882

    Article  CAS  Google Scholar 

  55. Zhang S, Gong K, Lu J (2004) Mater Lett 58:1292

    Article  CAS  Google Scholar 

  56. Manfred S (2002) Science 295:2430

    Article  Google Scholar 

  57. Mansur MA, Aziz MA (1982) Int J Cem Compos Lightweight Concr 4(2):75

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the University of Arizona Faculty Seed Grants Program. We gratefully acknowledge the Salt River Materials Group (SRMG) for providing the fly ash used in this investigation. We would also like to thank the W.M. Keck Center for Surface and Interface Imaging at University of Arizona to provide the SEM instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Chen, R. & Zhang, L. Utilization of chitosan biopolymer to enhance fly ash-based geopolymer. J Mater Sci 48, 7986–7993 (2013). https://doi.org/10.1007/s10853-013-7610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7610-4

Keywords

Navigation