Skip to main content
Log in

Properties and drug release profile of poly(N-isopropylacrylamide) microgels functionalized with maleic anhydride and alginate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study highlights the advantages of functionalized poly(N-isopropylacrylamide) (PNIPAAm) microgels over pure PNIPAAm microgels in terms of polymer network properties and drug release profiles. PNIPAAm network was modified by addition of maleic anhydride (MA) as a comonomer and by formation of interpenetrating polymer network in the presence of alginate. The functionalized thermosensitive microgels in the size range from 20 to 80 μm and with better performance in comparison with pure PNIPAAm microgels were prepared by inverse suspension polymerization. The impact of MA and alginate on the PNIPAAm microgel structure was evaluated through analysis of microgel size, size distribution, volume phase transition temperature (VPTT), equilibrium swelling ratio as well as morphology of the system. It was shown that the controlled modification of PNIPAAm network could result in microgels of considerably improved swelling capacity with unchanged thermosensitivity and maintained open pore morphology. In addition, drug release behavior of microgels could be markedly altered. Release of procaine hydrochloride from the selected microgels was studied using Franz diffusion cell at temperatures below and above VPTT of the microgels. Temperature-controlled drug release pattern was dependent on the type of functionalization of PNIPAAm network. According to drug loading properties and drug release mechanism, PNIPAAm/MA copolymer microgels demonstrated the optimal performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoshida R, Okano T (2010) In: Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York

    Google Scholar 

  2. Guenter G, Gerlach G (2009) In: Gerlach G, Arndt KF (eds) Chemical sensors and biosensors, vol 6. Springer-Verlag, Berlin

    Google Scholar 

  3. Cussler EL, Wang KL, Burban JH (1993) In: Dušek K (ed) Responsive gels: volume transitions II, vol 110. Springer-Verlag, Berlin

    Google Scholar 

  4. Galaev I, Mattiasson B (2008) Smart polymers: applications in biotechnology and biomedicine. CRC Press, Roca Baton

    Google Scholar 

  5. Anal AK (2007) Recent Pat Endocr Metab Immune Drug Discov 1:83

    Article  CAS  Google Scholar 

  6. Malmsten M (2006) Soft Matter 2:760

    Article  CAS  Google Scholar 

  7. Zha L, Banik B, Alexis F (2011) Soft Matter 7:5908

    Article  CAS  Google Scholar 

  8. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) Prog Polym Sci 33:448

    Article  CAS  Google Scholar 

  9. Ranade VV, Hollinger MA (2004) Drug delivery systems. CRC Press LLC, Roca Baton

    Google Scholar 

  10. Lin SY, Chen KS, Run-Chu L (2001) Biomaterials 22:2999

    Article  CAS  Google Scholar 

  11. Lopez VC, Hadgraft J, Snowden MJ (2005) Int J Pharm 292:137

    Article  CAS  Google Scholar 

  12. Hoare T, Pelton R (2004) Langmuir 20:2123

    Article  CAS  Google Scholar 

  13. Zhang XZ, Xu XD, Cheng SX, Zhuo RX (2008) Soft Matter 4:385

    Article  CAS  Google Scholar 

  14. Fu G, Soboyejo WO (2010) Mater Sci Eng C 30:8

    Article  CAS  Google Scholar 

  15. Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Radiat Phys Chem 69:303

    Article  Google Scholar 

  16. Kesim H, Rzaev ZMO, Dinçer S, Pişkin E (2003) Polymer 44:2897

    Article  CAS  Google Scholar 

  17. Zavgorodnya O, Serpe M (2011) Colloid Polym Sci 289:591

    Article  CAS  Google Scholar 

  18. Choi SH, Yoon JJ, Park TG (2002) J Colloid Interface Sci 251:57

    Google Scholar 

  19. Weiss-Malik RA, Solis FJ, Vernon BL (2004) J Appl Polym Sci 94:2110

    Article  CAS  Google Scholar 

  20. Das M, Sanson N, Fava D, Kumacheva E (2006) Langmuir 23:196

    Article  Google Scholar 

  21. Nussinovitch A (2010) Polymer macro- and micro-gel beads: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  22. Dumitriu RP, Mitchell GR, Vasile C (2011) Polym Int 60:222

    Article  CAS  Google Scholar 

  23. Dumitriu RP, Oprea AM, Vasile C (2009) In: Leonowicz M, Oleszak D (eds) Smart materials for smart devices and structures, vol 154. Trans Tech Publications Ltd, Stafa-Zurich

    Google Scholar 

  24. Piai JF, Moura MR, Rubira AF, Muniz EC (2008) Macromol Symp 266:108

    Article  CAS  Google Scholar 

  25. Petrusic S, Lewandowski M, Giraud S, Jovancic P, Bugarski B, Ostojic S, Koncar V (2012) J Appl Polym Sci 124:890

    Article  CAS  Google Scholar 

  26. Shi J, Alves NM, Mano JF (2006) Macromol Biosci 6:358

    Article  CAS  Google Scholar 

  27. Raz N, Li JK, Fiddes LK, Tumarkin E, Walker GC, Kumacheva E (2010) Macromolecules 43:7277

    Article  CAS  Google Scholar 

  28. Hu J, Meng H, Li G, Ibekwe SI (2012) Smart Mater Struct 21:053001 (p 23)

  29. Lin SY, Chen KS, Run-Chu L (1999) Polymer 40:6307

    Article  CAS  Google Scholar 

  30. Petrusic S, Jovancic P, Lewandowski M, Giraud S, Bugarski B, Djonlagic J, Koncar V (2012) J Polym Res 19:9979

    Article  Google Scholar 

  31. Tan JPK, Wang Q, Tam KC (2008) J Control Release 128:248

    Article  CAS  Google Scholar 

  32. Procaine hydrochloride, ChemBlink (2013). http://www.chemblink.com/products/51-05-8.htm. Accessed 14 July 2013

  33. Kayaman N, Kazan D, Erarslan A, Okay O, Baysal BM (1998) J Appl Polym Sci 67:805

    Article  CAS  Google Scholar 

  34. Chew NYK, Chan HK (2002) J Pharm Pharm Sci 5:162

    CAS  Google Scholar 

  35. Langer R, Peppas NA (2003) AIChE J 49:2990

    Article  CAS  Google Scholar 

  36. Chu LY, Park SH, Yamaguchi T, Nakao SI (2002) Langmuir 18:1856

    Article  CAS  Google Scholar 

  37. Karande VS, Bharimalla AK, Hadge GB, Mhaske ST, Vigneshwaran N (2011) Fiber Polym 12:299

    Article  Google Scholar 

  38. Arshady R (1992) Colloid Polym Sci 270:717

    Article  CAS  Google Scholar 

  39. Luciani CV, Choi KY, Xiao Z (2010) Chem Eng Technol 33:1833

    Article  CAS  Google Scholar 

  40. Hashim S, Brooks BW (2002) Chem Eng Sci 57:3703

    Article  CAS  Google Scholar 

  41. Kuo CK, Ma PX (2007) J Biomed Mater Res A 84A:899

    Google Scholar 

  42. Zhang W, Kim JH, Franco CMM, Middelberg APJ (2000) Appl Microbiol Biotechnol 54:28

    Article  CAS  Google Scholar 

  43. Kuckling D, Adler HJP, Arndt KF, Ling L, Habicher WD (2000) Macromol Chem Phys 201:273

    Article  CAS  Google Scholar 

  44. Ebara M, Aoyagi T, Sakai K, Okano T (2000) Macromolecules 33:8312

    Article  CAS  Google Scholar 

  45. Xu XD, Zhang XZ, Cheng SX, Zhuo RX, Kennedy JF (2007) Carbohydr Polym 68:416

    Article  CAS  Google Scholar 

  46. Çaykara T (2004) J Appl Polym Sci 92:763

    Article  Google Scholar 

  47. Liu YY, Liu WQ, Chen WX, Sun L, Zhang GB (2007) Polymer 48:2665

    Article  CAS  Google Scholar 

  48. Cheng H, Shen L, Wu C (2006) Macromolecules 39:2325

    Article  CAS  Google Scholar 

  49. Liu H, Zhen M, Wu R (2007) Macromol Chem Phys 208:874

    Article  CAS  Google Scholar 

  50. Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005) Colloid Polym Sci 283:431

    Article  CAS  Google Scholar 

  51. Lee SB, Park EK, Lim YM, Cho SK, Kim SY, Lee YM, Nho YC (2006) J Appl Polym Sci 100:4439

    Article  CAS  Google Scholar 

  52. Zhang N, Shen Y, Li X, Cai S, Liu M (2012) Biomed Mater 7:1

    CAS  Google Scholar 

  53. He H, Li L, Lee LJ (2006) Polymer 47:1612

    Article  CAS  Google Scholar 

  54. Omidian H, Park K (2010) In: Mattiasson B, Kumar A, Galaev IY (eds) Macroporous polymers: production properties and biotechnological/biomedical applications. CRC Press, Boca Raton

    Google Scholar 

  55. Akkaş P, Sarı M, Şen M, Güven O (1999) Radiat Phys Chem 55:717

    Article  Google Scholar 

  56. Fundueanu G, Constantin M, Ascenzi P (2009) Acta Biomater 5:363

    Article  CAS  Google Scholar 

  57. Lin CC, Metters AT (2006) Adv Drug Deliv Rev 58:1379

    Article  CAS  Google Scholar 

  58. Siepmann J, Peppas NA (2001) Adv Drug Deliv Rev 48:139

    Article  CAS  Google Scholar 

  59. Wang Q, Zhang J, Wang A (2009) Carbohydr Polym 78:731

    Article  CAS  Google Scholar 

  60. Abdul SA, Seshadri T, Sivakranth M, Umal SK (2010) Deriv Pharm Sin 1:61

    Google Scholar 

Download references

Acknowledgements

This research was supported under the project ARCUS 2006—Nord-Pas-de-Calais/Bulgarie—Roumanie—Serbie, granted by the French Ministry of Foreign Affairs and the Region Nord-Pas-De-Calais. The research is funded in part by the Ministry of Science of Republic of Serbia (Project Number III46010). The authors acknowledge Dr. Smilja Markovic from the Institute of Technical Sciences of SASA from Belgrade for the laser diffraction analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stojanka Petrusic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrusic, S., Jovancic, P., Lewandowski, M. et al. Properties and drug release profile of poly(N-isopropylacrylamide) microgels functionalized with maleic anhydride and alginate. J Mater Sci 48, 7935–7948 (2013). https://doi.org/10.1007/s10853-013-7604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7604-2

Keywords

Navigation