Journal of Materials Science

, Volume 48, Issue 21, pp 7435–7445 | Cite as

Microstructure and mechanical properties of two-phase Fe30Ni20Mn20Al30. Part I: Microstructure

  • X. Wu
  • I. Baker
  • M. K. Miller
  • K. L. More
  • Z. Cai
  • S. Chen
Article

Abstract

The microstructure of Fe30Ni20Mn20Al30 in both the as-cast condition and after annealing at 823 K for various times up to 72 h was characterized using transmission electron microscopy, scanning transmission electron microscopy, synchrotron-based X-ray diffraction, and atom probe tomography. The microstructure exhibited a basketweave morphology of (Mn, Fe)-rich B2-ordered (ordered b.c.c.) and (Ni, Al)-rich L21-ordered (Heusler type) phases with a lattice misfit of only 0.85 % and interfaces aligned along 〈100〉. The phase width increased from 5 nm for the as-cast alloy to 25 nm for 72 h annealed material, with no change in the elemental partitioning between the phases, with a time exponent for the coarsening kinetics of 0.19. Surprisingly, it was found that the room temperature hardness was largely independent of the phase width.

References

  1. 1.
    Hanna JA, Baker I, Wittman MW, Munroe PR (2005) J Mater Res 20:791CrossRefGoogle Scholar
  2. 2.
    Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) Proc Microsc Microanal 11:1864Google Scholar
  3. 3.
    Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) Processing and Fabrication of Advanced Materials XIV with Frontiers in Materials Science: Innovative Materials and Manufacturing Techniques, p 237–248Google Scholar
  4. 4.
    Loudis JA, Baker I (2008) Microsc Res Tech 71:489CrossRefGoogle Scholar
  5. 5.
    Loudis JA, Boyd TC, Coen D, Baker I (2007) Advanced Intermetallic-Based Alloys. Proceedings of the Materials Research Society, 980, 0980-II01-02980Google Scholar
  6. 6.
    Loudis JA, Baker I (2007) Phil Mag 87(35):5639CrossRefGoogle Scholar
  7. 7.
    Baker I, Zheng RK, Saxey DW, Kuwano S, Wittmann MW, Loudis JA, Prasad KS, Liu Z, Marceau R, Ringer SP (2009) Intermetallics 17:886CrossRefGoogle Scholar
  8. 8.
    Wu X, Baker I, Miller MK, More K (2009) Microsc Microanal 15:116CrossRefGoogle Scholar
  9. 9.
    Wittmann MW, Baker I, Hanna JA, Munroe PR (2005) Proc Mater Res Soc 842(S5.17):1Google Scholar
  10. 10.
    Wu X, Baker I, Wu H (2012) Proceeding of the Fall Materials Research Society Meeting, Boston, 25–30th November, in pressGoogle Scholar
  11. 11.
    Baker I, Liao Y, Wu X, Wu H, Miller MK, Russell KF, Munroe PR (2010) Proc 139th Annual Meeting & Exhibition, Supplemental Proceedings, vol 3, General Paper SelectionsGoogle Scholar
  12. 12.
    Baker I, Wu H, Wu X, Miller MK, Russell KF, Munroe PR (2011) Mater Charact 62:952CrossRefGoogle Scholar
  13. 13.
    Cai Z, Lai B, Yun W, Ilinski P, Legnini D, Maser J, Rodrigues W (2000) In: Meyer-Ilse W, Warwick T, Attwood D (Eds) X-ray Microscopy: Proceedings of the Sixth International ConferenceGoogle Scholar
  14. 14.
    Dejus R, Vasserman I, Sasaki S, Moog Undulator E (2002), A Magnetic properties and Spectral Performance, Report ANL/APS/TB-45. Argonne National Laboratory, ArgonneGoogle Scholar
  15. 15.
    Libera J, Cai Z, Lai B, Xu S (2002) Rev Sci Instrum 73(3):1506CrossRefGoogle Scholar
  16. 16.
    Miller MK, Russell KF, Thompson GB (2005) Ultramicroscopy 102:287CrossRefGoogle Scholar
  17. 17.
    Hellman OC, Vandenbroucke JA, Rüsing J, Isheim D, Seidman DN (2000) Microsc Microanal 6:437Google Scholar
  18. 18.
    Bradley AJ, Taylor A (1937) Proc Royal Soc A159(896):56CrossRefGoogle Scholar
  19. 19.
    Donaldson AT, Rawlings RD (1976) Scr Metall Mater 24:811Google Scholar
  20. 20.
    Kogachi M, Minamigawa S, Nakhigashi K (1992) Acta Metall Mater 40:1113CrossRefGoogle Scholar
  21. 21.
    Xiao H, Baker I (1994) Acta Metall Mater 42:1535CrossRefGoogle Scholar
  22. 22.
    Xiao H, Baker I (1995) Acta Metall Mater 43:391Google Scholar
  23. 23.
    ASM Handbook (1992) Alloy Phase Diagrams, vol 3, ASM International, Materials ParkGoogle Scholar
  24. 24.
    Tian WH, Ohishi K, Nemoto M (2001) Acta Metallurgica Sinica (English Letters) 14:313–318Google Scholar
  25. 25.
    Han CS (2007) Korean J Mater Res 17:420CrossRefGoogle Scholar
  26. 26.
    Oh-ishi K, Horita Z, Nemoto M (1997) Mater Trans JIM 38:99Google Scholar
  27. 27.
    Oh-ishi K, Nemoto M (1997) J Jpn Inst Met 61:282Google Scholar
  28. 28.
    Oh-ishi K, Horita Z, Nemoto M (1997) Mater Sci Eng A 239–240:472Google Scholar
  29. 29.
    Porter DA, Easterling E, Sherif MY (2009) Phase Transformations in Metals and Alloys. CRC Press, Boca Raton, pp 100–104Google Scholar
  30. 30.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  31. 31.
    Wagner C (1961) Electrochemistry 65:581Google Scholar
  32. 32.
    Ardell AJ, Ozolins V (2005) Nat Mater 4:309CrossRefGoogle Scholar
  33. 33.
    Polvani RS, Tzeng WS, Strutt PR (1976) Metall Trans A 7:33–40CrossRefGoogle Scholar
  34. 34.
    Strutt PR, Kear BH (1985) Proc Mater Res Soc 39:279CrossRefGoogle Scholar
  35. 35.
    Thomason PF (1971) Int J Fract Mech 7:409Google Scholar
  36. 36.
    Tabor D (1948) Proc R Soc Lond A 192:247CrossRefGoogle Scholar
  37. 37.
    J. E. Hilliard, Spinodal Decomposition, Phase Transformations (1970) ASMGoogle Scholar
  38. 38.
    Cahn JW (1963) Acta Metall 11:1275CrossRefGoogle Scholar
  39. 39.
    Ghista DN, Nix WD (1969) Mater Sci Eng 3:293CrossRefGoogle Scholar
  40. 40.
    Kato M (1981) Acta Metall 29:79CrossRefGoogle Scholar
  41. 41.
    Ardell AJ (1985) Precipitation Hardening. Metall Trans A16:2131Google Scholar
  42. 42.
    Dahlgren SD (1977) Metall Mater Trans A8:347Google Scholar
  43. 43.
    Kato M, Mori T, Schwartz LH (1980) Acta Metall 28:285CrossRefGoogle Scholar
  44. 44.
    Harmouche MR, Wolfenden A (1986) Mater Sci Eng 84:35CrossRefGoogle Scholar
  45. 45.
    Harmouche MR, Wolfenden A (1987) J Test Eval 15:101CrossRefGoogle Scholar
  46. 46.
    Harmouche MR, Wolfenden A (1984) Proc MRS 39:343CrossRefGoogle Scholar
  47. 47.
    Wu X, Baker I, Wu H, Miller MK, More KL, Bei H (2013) Intermetallics 32:413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • X. Wu
    • 1
  • I. Baker
    • 1
  • M. K. Miller
    • 2
  • K. L. More
    • 2
  • Z. Cai
    • 3
  • S. Chen
    • 3
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.X-Ray Science DivisionAdvanced Photon Source, Argonne National LaboratoryArgonneUSA

Personalised recommendations