Skip to main content
Log in

Effect of copper content on optostructural, morphological and photoelectrochemical properties of MoBi2−x Cu x Se4 thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present investigation we have reported a facile chemical route for the deposition of MoBi2−x Cu x Se4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) thin films at room temperature by using a simple and self-organised arrested precipitation technique. The deposited samples were characterised for their structural, morphological, optical and photoelectrochemical properties. X-ray diffraction patterns revealed that, undoped MoBi2Se5 shows a rhombohedral crystal structure, while mixed rhombohedral and orthorhombic crystal structures were observed with shifting of diffraction peaks after copper doping. The scanning electron microscopy and transmission electron microscopy images revealed that the surface morphology was improved with copper content. Compositional analysis of all samples was carried out by using energy dispersive X-ray spectroscopy. The direct band gap energy of all the samples estimated from absorbance spectra varies from 1.26 to 1.60 eV. The photoelectrochemical properties of all samples were studied in I/I3 redox electrolyte which demonstrated that the electrical conductivity was transformed from n-type to p-type after copper doping and photoelectrochemical response of p-type MoBi2−x Cu x Se4 thin film electrode was improved with increasing copper content. The mechanism of change in the type of electrical conductivity and augmentation in photoelectrochemical response after copper doping are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng KW, Huang CM, Yu YC, Li CT, Shu CK, Liu WL (2011) Sol Energy Mater Sol Cells 95:1940

    Article  CAS  Google Scholar 

  2. Kaneshiro J, Gaillard N, Rocheleau R, Miller E (2010) Sol Energy Mater Sol Cells 94:12

    Article  CAS  Google Scholar 

  3. Nair PK, Nair MTS, Garco VM, Arenas OL, Pen Y, Castillo A, Ayala IT, Gomezdaz O, Sanchez A, Campos J, Hu H, Suarez R, Rincon ME (1998) Sol Energy Mater Sol Cells 52:313

    Article  CAS  Google Scholar 

  4. Yadav AA, Masumdar EU (2011) Electrochim Acta 56:6406

    Article  CAS  Google Scholar 

  5. Zhong M, Shi J, Xiong F, Zhang W, Li C (2012) Sol Energy 86:756

    Article  CAS  Google Scholar 

  6. Shinde NM, Deshmukh PR, Patil SV, Lokhande CD (2012) Sens Actuators A. doi:10.1016/j.sna.2012.12.022

    Google Scholar 

  7. Patil SV, Deshmukh PR, Lokhande CD (2011) Sens Actuators B 156:450

    Article  CAS  Google Scholar 

  8. Rao GK, Bangera KV, Shivakumar GK (2013) Curr Appl Phys 13:298

    Article  Google Scholar 

  9. Castillo AC, Villasenor AS, Mejia I, Tostado SA, Gnade BE, Quevedo-Lopez MA (2012) Thin Solid Films 520:3107

    Article  Google Scholar 

  10. Galdikas A, Mironas A, Strazdiene V, Setkus A, Ancutiene I, Janickis V (2000) Sens Actuators B 67:76

    Article  CAS  Google Scholar 

  11. Morales-Fernandez IE, Medina-Montes MI, Gonzalez LA, Gnade B, Quevedo-Lopez MA, Ramirez-Bon R (2010) Thin Solid Films 519:512

    Article  CAS  Google Scholar 

  12. Xie W, Wang S, Zhu S, He J, Tang X, Zhang Q, Tritt TM (2012) J Mater Sci 48:2745. doi:10.1007/s10853-012-6895-z

    Article  Google Scholar 

  13. Barati A, Klein A, Jaegermann W (2009) Thin Solid Films 517:2149

    Article  CAS  Google Scholar 

  14. Xie H, Tian C, Li W, Feng L, Zhang J, Wu L, Cai Y, Lei Z, Yang Y (2010) Appl Surf Sci 257:1623

    Article  CAS  Google Scholar 

  15. Zakutayev A, McIntyre DH, Schneider G, Kykyneshi R, Keszler DA, Park CH, Tate J (2010) Thin Solid Films 518:5494

    Article  CAS  Google Scholar 

  16. Zou H, Rowe DM, Min G (2001) J Cryst Growth 222:82

    Article  CAS  Google Scholar 

  17. Dhanasekaran V, Mahalingam T, Chandramohan R, Rhee JK, Chu JP (2012) Thin Solid Films 520:6608

    Article  CAS  Google Scholar 

  18. Jiang D, Hu W, Wang H, Shen B, Deng Y (2012) J Mater Sci 47:4972. doi:10.1007/s10853-012-6372-8

    Article  CAS  Google Scholar 

  19. Amano H, Kito M, Hiramatsu K, Akasaki I (1989) Jpn J Appl Phys 28:L2112

    Article  CAS  Google Scholar 

  20. Look DC, Claflin B (2004) Phys Status Solidi B 241:624

    Article  CAS  Google Scholar 

  21. Wibowo RA, Kim KH (2009) Sol Energy Mater Sol Cells 93:941

    Article  CAS  Google Scholar 

  22. Garza C, Shaji S, Arato A, Tijerina EP, Castillo GA, Das Roy TK, Krishnan B (2011) Sol Energy Mater Sol Cells 95:2001

    Article  CAS  Google Scholar 

  23. Ambade SB, Mane RS, Kale SS, Sonawane SH, Shaikh AV, Han SH (2006) Appl Surf Sci 253:2123

    Article  CAS  Google Scholar 

  24. Zainal Z, Ali AJ, Kassim A, Hussein MZ (2003) Sol Energy Mater Sol Cells 79:125

    Article  CAS  Google Scholar 

  25. Rao GK, Bangera KV, Shivakumar GK (2011) Solid-State Electron 56:100

    Article  CAS  Google Scholar 

  26. Anuar K, Zainal Z, Hussein MZ, Saravanan N, Haslina I (2002) Sol Energy Mater Sol Cells 73:351

    Article  CAS  Google Scholar 

  27. Chavhan S, Sharma R (2006) Sol Energy Mater Sol Cells 90:1241

    Article  CAS  Google Scholar 

  28. Berruet M, Valdes M, Cere S, Vazquez M (2012) J Mater Sci 47:2454. doi:10.1007/s10853-011-6067-6

    Article  CAS  Google Scholar 

  29. Garza JG, Shajia S, Rodrigueza AC, Das Roya TK, Krishnan B (2011) Appl Surf Sci 257:10834

    Article  CAS  Google Scholar 

  30. Li J, Jiang L, Wang B, Liu F, Yang J, Tang D, Lai Y, Li J (2013) Electrochim Acta 87:153

    Article  CAS  Google Scholar 

  31. Mamun A, Islam ABMO, Bhuiyan AH (2005) J Mater Sci 16:263. doi:10.1007/s10854-005-0543-1

    Google Scholar 

  32. Agarwal MK, Patel PO, Talele LT, Laxminarayana D (2008) Phys Status Solidi A 90:107

    Article  Google Scholar 

  33. Sakr GB, Yahia IS, El-Komy GM, Salem AM (2011) Surf Coat Technol 205:3553

    Article  CAS  Google Scholar 

  34. Salunkhe MM, Kharade RR, Kharade SD, Mali SS, Patil PS, Bhosale PN (2012) Mater Res Bull 47:3860

    Article  CAS  Google Scholar 

  35. Pawar NB, Mali SS, Salunkhe MM, Mane RM, Patil PS, Bhosale PN (2012) New J Chem 36:1807

    Article  CAS  Google Scholar 

  36. Ajalkar BD, Burungale SH, Bhange DS, Bhosale PN (2004) J Mater Sci 39:1659. doi:10.1023/B:JMSC.0000016166.15326.41

    Article  CAS  Google Scholar 

  37. Patil NS, Sargar AM, Mane SR, Bhosale PN (2008) Appl Surf Sci 254:5261

    Article  CAS  Google Scholar 

  38. Lakshmi M, Bindu K, Bini S, Vijayakumar KP, Kartha CS, Abe T, Kashiwaba Y (2000) Thin Solid Films 370:89

    Article  CAS  Google Scholar 

  39. Dhanam M, Manoj PK, Prabhu RR (2005) J Cryst Growth 280:425

    Article  CAS  Google Scholar 

  40. Mane RS, Lokhande CD (2000) Mater Chem Phys 65:1

    Article  CAS  Google Scholar 

  41. Cullity BD (1957) The elements of X-ray diffraction, 1st edn. Addison-Wesley, Cambridge

    Google Scholar 

  42. Horak J, Stary Z, Lostak P, Pancir J (1990) J Phys Chem Solid 51:1353

    Article  CAS  Google Scholar 

  43. Horak J, Cermak K, Koudelka L (1986) Phys Chem Solids 47:805

    Article  CAS  Google Scholar 

  44. Lee SK, Oh TS, Hyun DB, Hwang CW (2000) Met Mater 6:67

    Article  CAS  Google Scholar 

  45. Mane RK, Ajalkar BD, Bhosale PN (2004) Mater Chem Phys 84:247

    Article  CAS  Google Scholar 

  46. Kose S, Atay F, Bilgin V, Akyuz I, Ketenci E (2010) Appl Surf Sci 256:4299

    Article  CAS  Google Scholar 

  47. Mott NF, Davis EA (1979) Electronics processes in non-crystalline materials. Clarendon, Oxford, p 428

    Google Scholar 

  48. Zunger A (2003) Appl Phys Lett 83:57

    Article  CAS  Google Scholar 

  49. Mali SS, Patil BM, Betty CA, Bhosale PN, Oh YW, Jadkar SR, Devan RS, Ma YR, Patil PS (2012) Electrochim Acta 66:216

    Article  CAS  Google Scholar 

  50. Hodes G, Howell IDJ, Peter LM (1992) Electrochem Soc 139:3136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are very much thankful to the Department of Science and Technology (DST) and University Grant Commission (UGC), New Delhi for providing financial assistance. This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20090094055). This work is partially supported by the Human Resource Development of the Korea Institute of Energy technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of knowledge Economy (No. 20124010203180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Popatrao N. Bhosale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharade, S.D., Pawar, N.B., Mali, S.S. et al. Effect of copper content on optostructural, morphological and photoelectrochemical properties of MoBi2−x Cu x Se4 thin films. J Mater Sci 48, 7300–7311 (2013). https://doi.org/10.1007/s10853-013-7550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7550-z

Keywords

Navigation