Skip to main content
Log in

The effect of relative humidity and evaporation rate on electrospinning: fiber diameter and measurement for control implications

  • Polymer Fibers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents an experimental study of the influence that relative humidity and evaporation rate have on the electrospinning process in terms of fiber diameter, process measurements, and selection of operating regime (applied voltage and flow rate) for polyethylene oxide/water (aqueous) solutions and poly(vinylpyrrolidone)/alcohol (non-aqueous) solutions. Poly(vinylpyrrolidone) alcohol solutions are studied to understand the separate influence of relative humidity and evaporation rate. Correlations are developed that relate measurable process parameters (jet diameter, charge density) as well as relative humidity and evaporation rate to fiber diameter. In addition, the influence that relative humidity has on selection of operating regime to achieve desired fiber diameter and maximum production rate is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Doshi J, Reneker DH (1995) Electrost J 35:151

    Article  CAS  Google Scholar 

  2. Srinivasan G, Reneker DH (1995) Polymer Int 36:195

    Article  CAS  Google Scholar 

  3. Matthews JA et al (2002) Biomacromolecules 3:232

    Article  CAS  Google Scholar 

  4. Matthews JA et al (2003) J Bioactive Compat Polym 18:125

    Article  CAS  Google Scholar 

  5. Boland ED et al (2004) Front Biosci 9:1422

    Article  CAS  Google Scholar 

  6. Kwoun SJ, Lec RM, Han B and Ko FK (2000) In: The 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, 7–9 June, 2000. The Westin Crown Center, Kansas City, Missouri, USA

  7. Wang XY et al (2002) Nano Lett 2:1273

    Article  CAS  Google Scholar 

  8. Han L et al (2009) MRS Proceedings, Symposium WW: Polymer nanofibers—fundamental studies and emerging applications. doi:10.1557/PROC-1240-WW09-27

  9. Mertz T et al (2011) MRS Proceedings, Symposium MM: Organic biolelectronics and photonics for sensing and regulation. doi:10.1557/opl.2011.877

  10. Yan X, Gevelber M (2010) ASME dynamic systems and control conference, vol 2, p 51. doi:10.1115/DSCC2010-4201

  11. Taylor GI (1966) Proc R Soc Lond Ser A 291:159

    Article  Google Scholar 

  12. Yarin AL, Koombhongse S, Reneker DH (2007) Polymer 48:6913

    Article  Google Scholar 

  13. Reneker DH, Yarin AL (2008) Polymer 49:2387

    Article  CAS  Google Scholar 

  14. Yarin AL (1993) Free liquid jets and films: hydrodynamics and rheology. Longman/Wiley, Harlow/New York

  15. Hohman MM et al (2001) Phys Fluids 13(8):2201

    Article  CAS  Google Scholar 

  16. Hohman MM et al (2001) Phys Fluids 13(8):2221

    Article  CAS  Google Scholar 

  17. Feng JJ (2002) Am Inst Phys. doi:10.1063/1.1510664

  18. De Vrieze S et al (2009) J Mater Sci. doi:10.1007/s10853-008-3010-6

  19. Tripatanasuwan S, Zhong Z, Reneker DH (2007) Polymer 48:5742. doi:10.1016/j.polymer.2007.07.045

    Article  CAS  Google Scholar 

  20. Huang L et al (2011) J Polym Sci, Part B: Polym Phys 49:1734

    Article  CAS  Google Scholar 

  21. Fridrikh SV et al (2003) Phys Rev Lett 90(14):144502

  22. Helgeson ME et al (2006) Am Inst Chem Eng. doi:10.1002/aic.11056

  23. Rutledge GC, Fridrikh SV (2007) Adv Drug Deliv Rev 59:1384

    Article  CAS  Google Scholar 

  24. Yarin AL (2001) Am Inst Phys. doi:10.1063/1.1408260

  25. Greenspan L (1997) J Res Natl Bur Stand A 81A:89

    Article  Google Scholar 

  26. Yan X (2011) PhD thesis, Boston University

  27. Yan X, Gevelber M (2010) J Electrost 68:458

    Article  CAS  Google Scholar 

  28. Jayjock MA (1994) Am Ind Hyg Assoc J 55:230

    Article  CAS  Google Scholar 

  29. Yarin AL (2001) Am Inst Phys. doi:10.1063/1.1333035

  30. Shin YM et al (2001) Polymer 42(25):9955

    Article  CAS  Google Scholar 

  31. Yu JH, Fridrikh SV, Rutledge GC (2006) Polymer 47(13):4789

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the funding support from the NSF (CMMI0826106) and Army (W911QY-11-1-0014), and the contributions of Thierry Desire, David Ouk, Sarah Provencher, Vicki Liu, and Michael Manion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gevelber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Gevelber, M. The effect of relative humidity and evaporation rate on electrospinning: fiber diameter and measurement for control implications. J Mater Sci 48, 7812–7826 (2013). https://doi.org/10.1007/s10853-013-7544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7544-x

Keywords

Navigation