Skip to main content
Log in

A versatile click-grafting approach to surface modification of silk fibroin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silk fibroin is a biocompatible, mechanically robust protein polymer that can be made optically transparent, and is widely used and studied as biomaterial for different applications. Its chemical modification is a fascinating way for tuning the properties and widening its application field. Herein, PEG grafting on the surface of regenerated silk fibroin films is obtained by direct linking based on a click reaction between the azido activated silk surface and an alkyne terminated PEG. The so obtained PEGylated films exhibit modified surface properties in comparison with the unmodified films. Through the same click approach, we also show that arrays of ordered fluorescent spots are steadily printed onto the film surface. This expands the versatility of our silk modification to different molecules and polymers, hence allowing for the realization of new functional hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mülhaupt R (2013) Macromol Chem Phys 214:159

    Article  Google Scholar 

  2. Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762

    Article  CAS  Google Scholar 

  3. Lawrence BD, Cronin-Golomb M, Georgakoudi I, Kaplan DL, Omenetto FG (2008) Biomacromolecules 9:1214

    Article  CAS  Google Scholar 

  4. Pérez-Rigueiro J, Viney C, Llorca J, Elices M (2000) J Appl Polym Sci 75:1270

    Article  Google Scholar 

  5. Jiang C, Wang X, Gunawidjaja R et al (2007) Adv Funct Mater 17:2229

    Article  CAS  Google Scholar 

  6. Altman GH, Diaz F, Jakuba C et al (2003) Biomaterials 24:401

    Article  CAS  Google Scholar 

  7. Fuchs S, Jiang X, Schmidt H et al (2009) Biomaterials 30:1329

    Article  CAS  Google Scholar 

  8. Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, James Kirkpatrick C (2004) Biomaterials 25:1069

    Article  CAS  Google Scholar 

  9. Wang Y, Bella E, Lee CSD et al (2010) Biomaterials 31:4672

    Article  CAS  Google Scholar 

  10. Wenk E, Wandrey AJ, Merkle HP, Meinel L (2008) J Control Release 132:26

    Article  CAS  Google Scholar 

  11. Lammel AS, Hu X, Park S-H, Kaplan DL, Scheibel TR (2010) Biomaterials 31:4583

    Article  CAS  Google Scholar 

  12. Kim DH, Viventi J, Amsden JJ et al (2010) Nat Mater 9:511

    Article  CAS  Google Scholar 

  13. Rogers JA, Kim DH, Kim YS et al (2009) Appl Phys Lett 95:133701

    Article  Google Scholar 

  14. Bettinger CJ, Cyr KM, Matsumoto A, Langer R, Borenstein JT, Kaplan DL (2007) Adv Mater 19:2847

    Article  CAS  Google Scholar 

  15. Kaplan DL, Omenetto FG (2010) Science 329:528

    Article  Google Scholar 

  16. Omenetto FG, Kaplan DL (2008) Nat Photon 2:641

    Article  CAS  Google Scholar 

  17. Galeotti F, Andicsova A, Yunus S, Botta C (2012) Soft Matter 8:4815

    Article  CAS  Google Scholar 

  18. Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biomacromolecules 9:1299

    Article  CAS  Google Scholar 

  19. Marsh RE, Corey RB, Pauling L (1955) Biochim Biophys Acta 16:1

    Article  CAS  Google Scholar 

  20. Murphy AR, Kaplan DL (2009) J Mater Chem 19:6443

    Article  CAS  Google Scholar 

  21. Hines DJ, Kaplan DL (2011) Biomacromolecules 12:804

    Article  CAS  Google Scholar 

  22. Nazarov R, Jin HJ, Kaplan DL (2004) Biomacromolecules 5:718

    Article  CAS  Google Scholar 

  23. Kim UJ, Park JY, Li CM, Jin HJ, Valluzzi R, Kaplan DL (2004) Biomacromolecules 5:786

    Article  CAS  Google Scholar 

  24. Vepari C, Kaplan DL (2007) Prog Polym Sci 32:991

    Article  CAS  Google Scholar 

  25. Inada Y, Furukawa M, Sasaki H et al (1995) Trends Biotechnol 13:86

    Article  CAS  Google Scholar 

  26. Desai NP, Hubbell JA (1991) J Biomed Mater Res 25:829

    Article  CAS  Google Scholar 

  27. Gombotz WR, Guanghui W, Horbett TA, Hoffman AS (1991) J Biomed Mater Res 25:1547

    Article  CAS  Google Scholar 

  28. Maroudas NG (1975) Nature 254:695

    Article  CAS  Google Scholar 

  29. Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE (2001) Annu Rev Biomed Eng 3:335

    Article  CAS  Google Scholar 

  30. Jin HJ, Park J, Valluzzi R, Cebe P, Kaplan DL (2004) Biomacromolecules 5:711

    Article  CAS  Google Scholar 

  31. Gotoh Y, Tsukada M, Baba T, Minoura N (1997) Polymer 38:487

    Article  CAS  Google Scholar 

  32. Gotoh Y, Tsukada M, Minoura N, Imai Y (1997) Biomaterials 18:267

    Article  CAS  Google Scholar 

  33. Sampaio S, Miranda TMR, Santos JG, Soares GMB (2011) Polym Int 60:1737

    Article  CAS  Google Scholar 

  34. Binder WH, Sachsenhofer R (2007) Macromol Rapid Commun 28:15

    Article  CAS  Google Scholar 

  35. Bolognesi A, Galeotti F, Mroz W, Gancheva V, Terlemezyan L (2010) Macromol Chem Phys 211:1488

    Article  CAS  Google Scholar 

  36. Le Droumaguet B, Velonia K (2008) Macromol Rapid Commun 29:1073

    Article  Google Scholar 

  37. Vepari C, Matheson D, Drummy L, Naik R, Kaplan DL (2010) J Biomed Mater Res A 93A:595

    CAS  Google Scholar 

  38. Gotoh Y, Tsukada M, Minoura N (1993) Bioconjug Chem 4:554

    Article  CAS  Google Scholar 

  39. Lu WY, Sun XW, Zhu C, Xu JH, Lin GQ (2010) Tetrahedron 66:750

    Article  CAS  Google Scholar 

  40. Smitha VS, Manjumol KA, Ghosh S et al (2011) J Am Ceram Soc 94:1731

    Article  CAS  Google Scholar 

  41. Galeotti F, Chiusa I, Morello L et al (2009) Eur Polym J 45:3027

    Article  CAS  Google Scholar 

  42. Menicagli R, Malanga C, Peluso P (1994) Synth Commun 24:2153

    Article  CAS  Google Scholar 

  43. Hu X, Kaplan D, Cebe P (2007) Thermochim Acta 461:137

    Article  CAS  Google Scholar 

  44. Gates BD, Xu QB, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) Chem Rev 105:1171 (Washington, DC, US)

    Article  CAS  Google Scholar 

  45. Rozkiewicz DI, Gierlich J, Burley GA et al (2007) ChemBioChem 8:1997

    Article  CAS  Google Scholar 

  46. Gassensmith JJ, Erne PM, Paxton WF, Frasconi M, Donakowski MD, Stoddart JF (2012) Adv Mater 25:223

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support to Regione Lombardia, GreenCosmetic ATP Project and to agreement Regione/CNR, project 4: “Nanoscienze per materiali e applicazioni biomediche”. The authors also thank Guido Scavia (ISMAC-CNR) for AFM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Galeotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galeotti, F., Andicsova, A., Bertini, F. et al. A versatile click-grafting approach to surface modification of silk fibroin films. J Mater Sci 48, 7004–7010 (2013). https://doi.org/10.1007/s10853-013-7509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7509-0

Keywords

Navigation