Skip to main content
Log in

Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pistoia G, Nazri G-A (eds) (2003) Lithium batteries, science and technology. Springer Science, New York

    Google Scholar 

  2. Scrosati B, Garche J (2010) J Power Sources 195(9):2419

    Article  CAS  Google Scholar 

  3. Rydh CJ, Sandén BA (2005) Energy Convers Manag 46(11–12):1957

    Article  CAS  Google Scholar 

  4. Kang B, Ceder G (2009) Nature 458(7853):190

    Article  CAS  Google Scholar 

  5. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, New York

    Book  Google Scholar 

  6. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nat Mater 4(5):366

    Article  CAS  Google Scholar 

  7. Yang M, Hou J (2012) Membranes 2(3):367

    Article  CAS  Google Scholar 

  8. Cheng F, Liang J, Tao Z, Chen J (2011) Adv Mater 23(15):1695

    Article  CAS  Google Scholar 

  9. Missan HPS, Sekhon SS (2005) J Mater Sci 40(14):3771. doi:10.1007/s10853-005-3317-5

    Article  CAS  Google Scholar 

  10. Balbuena PB, Wang Y (eds) (2004) Lithium-ion batteries: solid–electrolyte interphase. Imperial College Press, London

    Google Scholar 

  11. Hikmet RAM (2001) In: Buschow KHJ, Cahn Robert W, Merton CF et al (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, p 6534

    Chapter  Google Scholar 

  12. Arora P, Zhang Z (2004) Chem Rev 104(10):4419

    Article  CAS  Google Scholar 

  13. Xu K (2004) Chem Rev 104(10):4303

    Article  CAS  Google Scholar 

  14. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) J Power Sources 195(24):7904

    Article  CAS  Google Scholar 

  15. Stephen AM (2006) Eur Polym J 42(1):21

    Article  Google Scholar 

  16. Millet P, Andolfatto F, Durand R (1995) J Appl Electrochem 25(3):233

    CAS  Google Scholar 

  17. Chung YS, Yoo SH, Kim CK (2009) Ind Eng Chem Res 48(9):4346

    Article  CAS  Google Scholar 

  18. Venugopal G, Moore J, Howard J, Pendalwar S (1999) J Power Sources 77(1):34

    Article  CAS  Google Scholar 

  19. Costa CM, Tamano Machiavello MN, Gomez Ribelles JL et al (2013) J Mater Sci 48(9):3494. doi:10.1007/s10853-013-7141-z

    Article  CAS  Google Scholar 

  20. Kang Y, Kim HJ, Kim E, Oh B, Cho JH (2001) J Power Sources 92(1–2):255

    Article  CAS  Google Scholar 

  21. Costa CM, Silva MM, Lanceros-Mendez S (2013) RSC Adv. doi:10.1039/C3RA40732B

    Google Scholar 

  22. Costa CM, Rodrigues LC, Sencadas V, Silva MM, Rocha G, Lanceros-Méndez S (2012) J Membr Sci 407–408(8):193

    Article  Google Scholar 

  23. Yang XQ, Lee HS, Hanson L, McBreen J, Okamoto Y (1995) J Power Sources 54(2):198

    Article  CAS  Google Scholar 

  24. Nishikawa O, Sugimoto T, Nomura S, Doyama K, Miyatake K, Uchida H, Watanabe M (2004) Electrochim Acta 50(2–3):667

    Article  CAS  Google Scholar 

  25. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrochim Acta 50(1):69

    Article  CAS  Google Scholar 

  26. Li Z, Shan F, Wei J, Yang J, Li X, Wang X (2008) J Solid State Electrochem 12(12):1629

    Article  CAS  Google Scholar 

  27. Abraham KM, Jiang Z, Carroll B (1997) Chem Mater 9(9):1978

    Article  CAS  Google Scholar 

  28. Sylla S, Sanchez JY, Armand M (1992) Electrochim Acta 37(9):1699

    Article  CAS  Google Scholar 

  29. Cui W-W, Tang D-Y, Gong Z-l, Guo Y-D (2012) J Mater Sci 47(17):6276. doi:10.1007/s10853-012-6547-3

    Article  CAS  Google Scholar 

  30. Srinivasan G, Reneker DH (1995) Polym Int 36(2):195

    Article  CAS  Google Scholar 

  31. Saunier J, Alloin F, Sanchez JY, Maniguet L (2004) J Polym Sci B 42(12):2308

    Article  CAS  Google Scholar 

  32. Nakajima T, Groult H (2005) Fluorinated materials for energy conversion. Elsevier, Amsterdam

    Google Scholar 

  33. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2005) J Electrochem Soc 152(2):A295

    Article  CAS  Google Scholar 

  34. Gao K, Hu X, Dai C, Yi T (2006) Mater Sci Eng B 131(1–3):100

    Article  CAS  Google Scholar 

  35. Ding Y, Zhang P, Long Z, Jiang Y, Xu F, Di W (2008) Sci Technol Adv Mater 9(1):015005

    Article  Google Scholar 

  36. Alcoutlabi M, Lee H, Watson JV et al (2013) J Mater Sci 48(6):2690. doi:10.1007/s10853-012-7064-0

    Article  CAS  Google Scholar 

  37. Choi SW, Kim JR, Ahn YR, Jo SM, Cairns EJ (2006) Chem Mater 19(1):104

    Article  Google Scholar 

  38. Croce F, Focarete ML, Hassoun J, Meschini I, Scrosati B (2011) Energy Environ Sci 4(3):921

    Article  CAS  Google Scholar 

  39. Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Soft Mater 8(3):274

    Article  CAS  Google Scholar 

  40. California A, Cardoso VF, Costa CM, Sencadas V, Botelho G, Gómez-Ribelles JL, Lanceros-Mendez S (2011) Eur Polym J 47(12):2442

    Article  CAS  Google Scholar 

  41. Brett AMCFO, Brett CMA (1996) Electroquímica: princípios, métodos e aplicações. Livraria Almedina, Coimbra

    Google Scholar 

  42. Raghavan P, Manuel J, Zhao X, Kim D-S, Ahn J-H, Nah C (2011) J Power Sources 196(16):6742

    Article  CAS  Google Scholar 

  43. Karabelli D, Leprêtre JC, Alloin F, Sanchez JY (2011) Electrochim Acta 57(1):98

    Article  CAS  Google Scholar 

  44. Quartarone E, Mustarelli P, Magistris A (2002) J Phys Chem B 106(42):10828

    Article  CAS  Google Scholar 

  45. Sheidaei A, Xiao X, Huang X, Hitt J (2011) J Power Sources 196(20):8728

    Article  CAS  Google Scholar 

  46. Kim CS, Oh SM (2001) Electrochim Acta 46(9):1323

    Article  CAS  Google Scholar 

  47. Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

    Google Scholar 

  48. Chang B-Y, Park S-M (2010) Annu Rev Anal Chem 3(1):207

    Article  CAS  Google Scholar 

  49. Cole K (1941) J Chem Phys 9(4):341

    Article  CAS  Google Scholar 

  50. Saunier J, Alloin F, Sanchez JY, Caillon G (2003) J Power Sources 119–121(1–2):454

    Article  Google Scholar 

  51. Rajendran S, Sivakumar P (2008) Physica B 403(4):509

    Article  CAS  Google Scholar 

  52. Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry, Cambridge

    Google Scholar 

  53. Aurbach D, Daroux M, Faguy P, Yeager E (1991) J Electroanal Chem 297(1):225

    Article  CAS  Google Scholar 

  54. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This study was funded by FEDER funds through the “Programa Operacional Factores de Competitividade – COMPETE” and by national funds by FCT—Fundação para a Ciência e a Tecnologia, project references Project PTDC/CTM/69316/2006, NANO/NMed-SD/0156/2007 and Pest-C/QUI/UIO686/2011 and Grant SFRH/BD/68499/2010 (C.M.C) and SFRH/BD/66930/2009 (J.N.P.) SFRH/BPD/63148/2009 (V.S). The authors also thank Celgard, LLC for kindly supplying their high quality membranes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, C.M., Nunes-Pereira, J., Sencadas, V. et al. Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. J Mater Sci 48, 6833–6840 (2013). https://doi.org/10.1007/s10853-013-7489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7489-0

Keywords

Navigation