Skip to main content
Log in

Influence of oxygen ingress on fine scale precipitation of α-Ti during oxidation of Beta21S β-Ti alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of a surface oxide layer along with α precipitation in the subsurface oxygen-enriched zone, during the oxidation of a β-Ti alloy, has been investigated using scanning electron microscopy, electron probe micro analysis, X-ray diffraction, (Scanning) transmission electron microscopy, 3D-Atom Probe studies, and nano-indentation. Immediately below the nanocrystalline oxide layer, a two-phase mixture consisting of nanoscale equiaxed α grains and rutile grains are formed. With increasing depth, the α morphology below the oxide layer varied from nanoscale equiaxed to lathlike, coupled with substantial changes in size-scale and nucleation density of α precipitates. A distinct change in the lattice parameters of α and β phases below the oxide layer and the overall micro hardness of the material is also noted. The role of oxygen ingress on the scale and morphology of α precipitation has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boyer R, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys. ASM Intl, Materials Park

    Google Scholar 

  2. Advanced Aerospace Alloys (1991) Mater Eng, p 26

  3. Boyer R (1996) Mater Sci Eng A213:103

    CAS  Google Scholar 

  4. Shevel’kov V.V (1992) Translated from Metallovedenie i Termicheskaya Obrabotke Metallov, 8, 33–37

  5. Fanning JC (2005) J Mater Eng Perf 14(6):788

    Article  CAS  Google Scholar 

  6. Bania PJ, Parris WM (1990) TDA Intl. presentation, Orlando

  7. Schutz RW (1994) JOM 46(7):14

    Article  Google Scholar 

  8. Agarwal N, Bhattarcharjee A, Ghosal P, Nandy TK, Sagar PK (2008) Indian Inst Met 61(5):419

    Article  CAS  Google Scholar 

  9. Huang X, Cuddy J, Goel N, Richards NL (1994) JMEPEG 3:560

    Article  CAS  Google Scholar 

  10. Xu Guangjun, Yang Gaiying, Zhu Jing (1999) Rare Met 18(3):176

    CAS  Google Scholar 

  11. Wallace TA, Wiedemann KE, Clark RK (1993) Titanium 92, Science and Technology

  12. Chaze AM, Coddet C (1987) J Mater Sci 22:1206. doi:10.1016/j.msea.2007.11.069

    Article  CAS  Google Scholar 

  13. Malinov S et al (2002) Mat Charact 48:279

    Article  CAS  Google Scholar 

  14. Van Thyne RJ, Bumps ES, Kessler HD, Hansen M (1952) Phase diagram of titanium aluminum, titanium-chromium-iron and titanium-oxygen alloy systems, WADC technical report 52-16

  15. Li YG, Blenkinsop PA, Loretto MH, Rugg D, Voice W (1999) Acta Mat 47(10):2889

    Article  CAS  Google Scholar 

  16. Imam MA, Feng CR (1997) Advances in the science and technology of titanium alloy processing, The Minerals, Metals and Materials Society

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behera, A., Nag, S., Mahdak, K. et al. Influence of oxygen ingress on fine scale precipitation of α-Ti during oxidation of Beta21S β-Ti alloy. J Mater Sci 48, 6700–6706 (2013). https://doi.org/10.1007/s10853-013-7470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7470-y

Keywords

Navigation