Journal of Materials Science

, Volume 48, Issue 18, pp 6083–6107 | Cite as

Developing plant fibre composites for structural applications by optimising composite parameters: a critical review

  • Darshil U. ShahEmail author


Plant fibres, perceived as environmentally sustainable substitutes to E-glass, are increasingly being employed as reinforcements in polymer matrix composites. However, despite the promising technical properties of cellulose-based fibres and the historic use of plant fibre reinforced plastics (PFRPs) in load-bearing components, the industrial uptake of PFRPs in structural applications has been limited. Through an up-to-date critical review of the literature, this manuscript presents an overview on key aspects that need consideration when developing PFRPs for structural applications, including the selection of (I) the fibre type, fibre extraction process and fibre surface modification technique, (II) fibre volume fraction, (III) reinforcement geometry and interfacial properties, (IV) reinforcement packing arrangement and orientation and (V) matrix type and composite manufacturing technique. A comprehensive materials selection chart (Ashby plot) is also produced to facilitate the design of a PFRP component, based on the (absolute and specific) tensile properties.


Fibre Volume Fraction Plant Fibre Interfacial Shear Strength Bast Fibre Tensile Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Dr Peter Schubel (the University of Nottingham), Dr Mike Clifford (the University of Nottingham), Dr Peter Licence (the University of Nottingham) and Prof Ton Peijs (Queen Mary, University of London) for their insightful discussions. The author also thanks the anonymous referees for suggesting valuable improvements to this study. For funding, the author thanks the University of Nottingham, the Nottingham Innovative Manufacturing Research Centre (EPSRC, Project title ‘Sustainable manufacture of wind turbine blades using natural fibre composites and optimal design tools’) and the University of Oxford (Oxford Silk Group).


  1. 1.
    Reux F (2012). Worldwide composites market: main trends of the composites industry, in 5th Innovative Composites Summit—JEC ASIA, 26–28 June 2012Google Scholar
  2. 2.
    Joshi S, Drzal LT, Mohanty AK, Arora S (2004) Compos A 35:371CrossRefGoogle Scholar
  3. 3.
    Steger J (2010) J Biobased Mater Bioenergy 4(2):181CrossRefGoogle Scholar
  4. 4.
    Pickering S (2006) Compos A 37:1206CrossRefGoogle Scholar
  5. 5.
    Yang Y, Boom R, Irion B, van Heerden D, Kuiper P, de Wita H (2012) Chem Eng Process 51:53CrossRefGoogle Scholar
  6. 6.
    John M, Thomas S (2008) Carbohydr Polym 71:343CrossRefGoogle Scholar
  7. 7.
    Bledzki A, Gassan J (1999) Prog Polym Sci 24:221CrossRefGoogle Scholar
  8. 8.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Prog Polym Sci 37(11):1552CrossRefGoogle Scholar
  9. 9.
    Mohanty A, Misra M, Drzal LT (eds) (2005) Natural fibers, biopolymers and biocomposites. Taylor and Francis, New YorkGoogle Scholar
  10. 10.
    Riedel U (2012) Polym Sci 10(18):295Google Scholar
  11. 11.
    Pickering K (ed) (2008) Properties and performance of natural-fibre composites. CRC Press LLC, Boca RatonGoogle Scholar
  12. 12.
    Khot S, Lascala JJ, Can E, Morye SS, Williams GI, Palmese GR, Kusefoglu SH, Wool RP (2000) J Appl Polym Sci 82(3):702Google Scholar
  13. 13.
    Wool R, Khot SN (2001) ASM handbook: composites. ASM International, Ohio, p 184Google Scholar
  14. 14.
    Bledzki A, Sperber VE, Faruk O (2002) Natural wood and fibre reinforcement in polymers. Rapra Technology Ltd, ShrewsburyGoogle Scholar
  15. 15.
    Franck R (ed) (2005) Bast and other plant fibres. CRC Press LLC, Boca RatonGoogle Scholar
  16. 16.
    Chand N, Fahim M (2008) Tribology of natural fiber polymer composites. Woodhead Publishing Ltd, CambridgeCrossRefGoogle Scholar
  17. 17.
    Wool R, Sun XS (2005) Bio-based polymers and composites. Elsevier Science & Technology Books, New YorkGoogle Scholar
  18. 18.
    Wambua P, Ivens J, Verpoest I (2003) Compos Sci Technol 63:1259CrossRefGoogle Scholar
  19. 19.
    Zini E, Scandola M (2011) Polym Compos 32(12):1905CrossRefGoogle Scholar
  20. 20.
    Summerscales J, Dissanayake N, Virk AS, Hall W (2010) Compos A 41(10):1336CrossRefGoogle Scholar
  21. 21.
    Shahzad A (2012) J Compos Mater 46(8):973CrossRefGoogle Scholar
  22. 22.
    Dhanasekaran S, Balachandran G (2008). Structural behavior of jute fiber composites—a review. SAE technical paper Vol 1, p 2653Google Scholar
  23. 23.
    Li Y, Mai Y, Ye L (2000) Compos Sci Technol 60(11):2037CrossRefGoogle Scholar
  24. 24.
    Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49(7):1253CrossRefGoogle Scholar
  25. 25.
    Miao M, Finn N (2008) J Text Eng 54(6):165CrossRefGoogle Scholar
  26. 26.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) Compos B Eng 42:856CrossRefGoogle Scholar
  27. 27.
    Dittenber D, Gangarao HVS (2012) Compos A 43:1419CrossRefGoogle Scholar
  28. 28.
    Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos A (2011) Int J Polym Sci. doi: 10.1155/2011/837875 Google Scholar
  29. 29.
    Shah D, Schubel PJ, Licence P (2012) J Mater Sci. doi: 10.1007/s10853-011-6096-1 Google Scholar
  30. 30.
    Lewin M (2007) Handbook of fiber chemistry, 3rd edn. CRC Press LLC, Boca RatonGoogle Scholar
  31. 31.
    Vuure A (2008) Innovation for sustainable production (i-SUP). Bruges, BelgiumGoogle Scholar
  32. 32.
    Witten E, Schuster A (2010). Composites market report: market developments, challenges, and chances. Industrievereinigung verstärkte kunststoffe and carbon compositesGoogle Scholar
  33. 33.
    Carus M (2011). Bio-composites: technologies, applications and markets, in 4th international conference on sustainable materials, polymers and composites. Birmingham, UK 6–7 July 2011Google Scholar
  34. 34.
    FAOSTAT- Food and Agriculture Organization of the United Nations (2012). Accessed 5 May 2013
  35. 35.
    Carus M, Gahle C (2008) Natural fibre reinforced plastics—material with future. nova-Institut GmbH, HuerthGoogle Scholar
  36. 36.
    Dumanli A, Windle AH (2012) J Mater Sci. doi: 10.1007/s10853-011-6081-8 Google Scholar
  37. 37.
    Bos H (2004). The potential of flax fibres as reinforcement for composite materials. PhD, 2004. Technische Universiteit Eindhoven, EindhovenGoogle Scholar
  38. 38.
    Bledzki A, Faruk O, Sperber VE (2006) Macromol Mater Eng 291:449CrossRefGoogle Scholar
  39. 39.
    Almaguer R (2011) Opportunities in natural fiber composites. Las Colinas, LucintelGoogle Scholar
  40. 40.
    Ticoalu A, Aravinthan T, Cardona F (2010). A review of current development in natural fiber composites for structural and infrastructure applications, in southern region engineering conference, Toowoomba, 11–12 November 2010Google Scholar
  41. 41.
    van Rijswijk K, Brouwer WD, Beukers A (2001) Application of natural fibre composites in the development of rural societies. Delft University of Technology, DelftGoogle Scholar
  42. 42.
    Fowler P, Hughes JM, Elias RM (2006) J Sci Food Agric 86:1781CrossRefGoogle Scholar
  43. 43.
    Sharma R, Raghupathy VP, Rao SS, Shubhanga P (2007). Review of recent trends and developments in biocomposites, in international conference on recent developments in structural engineering, Manipal, Aug 30–Sep 1 2007Google Scholar
  44. 44.
    Riedel U, Nickel J (1999) Die Angewandte Makromolekulare Chemie 272:34CrossRefGoogle Scholar
  45. 45.
    Yu H, Kim SS, Hwang IU, Lee DG (2008) Compos Struct 86:285CrossRefGoogle Scholar
  46. 46.
    Frohnapfel P, Muggenhamer M, Schlögl C, Drechsler K (2010). Natural fibre composites for innovative small scale wind turbine blades, in international workshop on small scale wind energy for developing countries, Pokhara, Nepal, 15–17 November 2010Google Scholar
  47. 47.
    Shah D, Schubel PJ, Clifford MJ, Licence P (2012). Fatigue characterisation of plant fibre composites for small-scale wind turbine blade applications, in 5th innovative composites summit—JEC Asia, Singapore, 26–28 June 2012Google Scholar
  48. 48.
    Shah D, Schubel PJ, Clifford MJ, Licence P (2012). JEC composites magazine, No. 73: special JEC Asia, JEC composites, Paris June 2012 p 51–54Google Scholar
  49. 49.
    Shah D, Schubel PJ (2013). JEC composites magazine, no. 78: feature wind energy, JEC Composites, Paris, Jan–Feb 2013 p 29–33Google Scholar
  50. 50.
    Brøndsted P, Holmes JW, Sørensen BF, Jiang Z, Sun Z, Chen X (2008) Evaluation of a bamboo/epoxy composite as a potential material for hybrid wind turbine blades. Chinese Wind Energy Association, Beijing, ChinaGoogle Scholar
  51. 51.
    Shah D, Schubel PJ, Clifford MJ (2013) Compos B Eng 52:172CrossRefGoogle Scholar
  52. 52.
    Auto body made of plastics resists denting under hard blows, in popular mechanics magazine (1941). vol 76 no. 6 p 12Google Scholar
  53. 53.
    Aero Research Limited (1945) A fighter fuselage in synthetic material, vol 34. Aero Research Limited, CambridgeGoogle Scholar
  54. 54.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57(165):651CrossRefGoogle Scholar
  55. 55.
    Eichhorn S, Dufresne A, Aranguren M et al (2010) J Mater Sci. doi: 10.1007/s10853-009-3874-0 Google Scholar
  56. 56.
    Summerscales J, Dissanayake N, Virk AS, Hall W (2010) Compos A 41(10):1329CrossRefGoogle Scholar
  57. 57.
    John M, Anandjiwala RD (2008) Polym Compos 29:187CrossRefGoogle Scholar
  58. 58.
    Kabir M, Wang H, Lau KT, Cardona F (2012) Compos B 43:2883CrossRefGoogle Scholar
  59. 59.
    Nunna S, Chandra PR, Shrivastava S, Jalan AK (2012) J Reinf Plast Compos 31:759CrossRefGoogle Scholar
  60. 60.
    Summerscales J, Virk AS, Hall W (2013) Compos A 44:32CrossRefGoogle Scholar
  61. 61.
    Virk A, Hall W, Summerscales J (2012) Mater Sci Technol 28(7):864CrossRefGoogle Scholar
  62. 62.
    Facca A, Kortschot MT, Yan N (2006) Compos A 37:1660CrossRefGoogle Scholar
  63. 63.
    Joseph K, Filho RDT, James B, Thomas S, de Carvalho LH (1999) Revista Brasileira de Engenharia Agrícola e Ambiental 3(3):367Google Scholar
  64. 64.
    Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) Macromol Mater Eng 289:955CrossRefGoogle Scholar
  65. 65.
    Harish S, Michael DP, Bensely A, Lal DM, Rajadurai A (2009) Mater Charact 60:44CrossRefGoogle Scholar
  66. 66.
    Hassan A, Salema AA, Ani FN, Bakar AA (2010) Polym Compos 31(12):2079CrossRefGoogle Scholar
  67. 67.
    La Mantia F, Morreale M (2011) Compos A 42:579CrossRefGoogle Scholar
  68. 68.
    Koronis G, Silva A, Fontul M (2013) Compos B 44(1):120CrossRefGoogle Scholar
  69. 69.
    Ashby M (1992) Materials selection in mechanical design. Pergamon, OxfordGoogle Scholar
  70. 70.
    Ashby M (2007) The CES EduPack database of natural and man-made materials (MFA, 20/12/2007). Cambridge University and Granta Design, CambridgeGoogle Scholar
  71. 71.
    Shah D, Schubel PJ, Clifford MJ, Licence P (2011). Mechanical characterization of vacuum infused thermoset matrix composites reinforced with aligned hydroxyethyl cellulose sized plant bast fibre yarns, in 4th international conference on sustainable materials, polymers and composites, Birmingham, UK, 6–7 July 2011Google Scholar
  72. 72.
    Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Appl Compos Mater 13(4):199CrossRefGoogle Scholar
  73. 73.
    Madsen B, Lilholt H (2003) Compos Sci Technol 63:1265CrossRefGoogle Scholar
  74. 74.
    Madsen B, Thygesen A, Liholt H (2009) Compos Sci Technol 69:1057CrossRefGoogle Scholar
  75. 75.
    Madsen B (2004). Properties of plant fibre yarn polymer composites—an experimental study. PhD, 2004. Technical University of Denmark, LyngbyGoogle Scholar
  76. 76.
    Lamy B, Baley C (2000) J Mater Sci Lett 19:979CrossRefGoogle Scholar
  77. 77.
    Summerscales J, Hall W, Virk AS (2011) J Mater Sci. doi: 10.1007/s10853-011-5569-6 Google Scholar
  78. 78.
    Thomason J, Gentles F, Brennan A (2012). Natural fibre cross sectional area effects on the determination of fibre mechanical properties, in 15th European conference on composite materials (ECCM-15), Venice, ItalyGoogle Scholar
  79. 79.
    Shah D, Schubel PJ, Clifford MJ (2013) J Compos Mater 47(4):425CrossRefGoogle Scholar
  80. 80.
    Cox H (1952) Br J Appl Phys 3:72CrossRefGoogle Scholar
  81. 81.
    Kelly A, Tyson WR (1965) J Mech Phys Solids 13(6):329CrossRefGoogle Scholar
  82. 82.
    Harris B (1999) Engineering composite materials. The Institute of Materials, LondonGoogle Scholar
  83. 83.
    Krenchel H (1964) Fibre reinforcement. Akademisk Forlag, Denmark, p 16Google Scholar
  84. 84.
    Thomason J, Carruthers J, Kelly J, Johnson G (2011) Compos Sci Technol 71:1008CrossRefGoogle Scholar
  85. 85.
    d’Almeida J, Mauricio MHP, Paciornik S (2012) J Compos Mater 46(24):3057CrossRefGoogle Scholar
  86. 86.
    Virk A (2010). Numerical models for natural fibre composites with stochastic properties. PhD, 2010, University of Plymouth, PlymouthGoogle Scholar
  87. 87.
    Kadam K, Forrest LH, Jacobson WA (2000) Biomass Bioenergy 18:369CrossRefGoogle Scholar
  88. 88.
    Putun A, Apaydin E, Putun E (2004) Energy 29:2171CrossRefGoogle Scholar
  89. 89.
    Steele P, El-Hissewy A, Badawi AEE (2009). Agro-industrial use of rice straw—exploring opportunities for making better use of rice residues in Egypt, 2009. Food and Agriculture Organization of the United Nations Regional Office for the Near East (Cairo, Egypt) and Ministry of Agriculture and Land Reclamation (Cairo, Egypt): EgyptGoogle Scholar
  90. 90.
    Wolcott M, Englund K (1999). A technology review of wood-plastic composites, in 33rd international particleboard/composite materials symposium, Washington State University, PullmanGoogle Scholar
  91. 91.
    Ismail M, Yassen AAM, Afify MS (2011) Fibers Polym 12(5):648CrossRefGoogle Scholar
  92. 92.
    Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M (2008) Aust J Crop Sci 1(2):37Google Scholar
  93. 93.
    Venkateshwaran N, Elayaperumal A (2010) J Reinf Plast Compos 29:2387CrossRefGoogle Scholar
  94. 94.
    Kamath M, Bhat GS, Parikh DV, Mueller D (2005) Int Nonwovens J 14(1):34Google Scholar
  95. 95.
    Fu S, Lauke B, Mader E, Yue CY, Hu X (2007) Compos A 31:1117CrossRefGoogle Scholar
  96. 96.
    van den Oever M, Bos HL, van Kemenade MJJM (2000) Appl Compos Mater 7:387CrossRefGoogle Scholar
  97. 97.
    Arib R, Sapuan SM, Ahmad MMHM, Paridah MT, Zaman HMDK (2006) Mater Des 27:391CrossRefGoogle Scholar
  98. 98.
    Paul S, Joseph K, Mathew GDG, Pothen LA, Thomas S (2010) Compos A 41:1380CrossRefGoogle Scholar
  99. 99.
    Rukmini K, Ramaraj B, Shetty SK, Taraiya A, Bandyopadhyay S (2013) Adv Polym Technol 32(1):1CrossRefGoogle Scholar
  100. 100.
    Rozman H, Tay GS, Kumar RN, Abusamah A, Ismail H, Ishak ZAM (2001) Eur Polymer J 37(6):1283CrossRefGoogle Scholar
  101. 101.
    Okuba K, Fujii T, Yamamoto Y (2004) Compos A 35:377CrossRefGoogle Scholar
  102. 102.
    Lee N, Jang J (1999) Compos A 30:815CrossRefGoogle Scholar
  103. 103.
    Placet V, Trivaudey F, Cisse O, Gucheret-Retel V, Boubakar ML (2012) Compos A 43(2):275CrossRefGoogle Scholar
  104. 104.
    Mwaikambo L, Ansell MP (2001) J Mater Sci Lett 20(23):2095CrossRefGoogle Scholar
  105. 105.
    Thygesen A (2006). Properties of hemp fibre polymer composites—an optimisation of fibre properties using novel defibration methods and fibre characterisation. PhD, 2006. The Royal Agricultural and Veterinary University of Denmark, RoskildeGoogle Scholar
  106. 106.
    McLaughlin E, Tait RA (1980) J Mater Sci. doi: 10.1007/BF00552431 Google Scholar
  107. 107.
    Mukherjee P, Satyanarayana KG (1986) J Mater Sci. doi: 10.1007/BF01106524 Google Scholar
  108. 108.
    Satyanarayana K, Pillai CKS, Sukumaran K, Pillai SGK, Rohatgi PK, Vijayan K (1982) J Mater Sci. doi: 10.1007/BF00543759 Google Scholar
  109. 109.
    Baley C (2002) Compos A 33:939CrossRefGoogle Scholar
  110. 110.
    Gassan J, Chate A, Bledzki AK (2001) J Mater Sci. doi: 10.1023/A1017969615925 Google Scholar
  111. 111.
    Karine C, Jean-Paul J, Moussa G, Baley C, Laurent B, Joel B (2007). Morphology and mechanical behaviour of a natural composite: the flax fiber, in 16th international conference on composite materials (ICCM-16), Kyoto, JapanGoogle Scholar
  112. 112.
    Thygesen A, Oddershede J, Liholt H, Thomsen AB, Stahl K (2005) Cellulose 12:563CrossRefGoogle Scholar
  113. 113.
    Parikh D, Thibodeaux DP, Condon B (2007) Text Res J 77(8):612CrossRefGoogle Scholar
  114. 114.
    Sheng-zuo F, Wen-zhong Y, Xiang-xiang FU (2004) J For Res 15(4):261CrossRefGoogle Scholar
  115. 115.
    Bodros E, Baley C (2008) Mater Lett 62(14):2143CrossRefGoogle Scholar
  116. 116.
    Porter D, Guan J, Vollrath F (2013) Adv Mater 25(9):1275CrossRefGoogle Scholar
  117. 117.
    Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Compos A 28:1912CrossRefGoogle Scholar
  118. 118.
    Hanninen T, Thygesen A, Mehmood S, Madsen B, Hughes M (2012) Ind Crops Prod 39:7CrossRefGoogle Scholar
  119. 119.
    Weyenberg I, Ivens J, Coster A, Kino B, Baetens E, Verpoest I (2003) Compos Sci Technol 63:1241CrossRefGoogle Scholar
  120. 120.
    Baets J, Plastria D, Ivens J, Verpoest I (2011). Determination of the optimal flax fibre preparation for use in UD-epoxy composites, in 4th international conference on sustainable materials, polymers and composites, 6–7 July 2011 BirminghamGoogle Scholar
  121. 121.
    Hughes M (2012) J Mater Sci. doi: 10.1007/s10853-011-6025-3 Google Scholar
  122. 122.
    Aslan M, Chinga-Carrasco G, Sørensen BF, Madsen B (2011) J Mater Sci. doi: 10.1007/s10853-011-5581 Google Scholar
  123. 123.
    Madsen B, Mehmood S, Aslan M (2012). Variability in properties of natural fibres, in NATEX workshop, Chesterfield, UKGoogle Scholar
  124. 124.
    Goutianos S, Peijs T (2003) Adv Compos Lett 12(6):237Google Scholar
  125. 125.
    Dissanayake N (2011). Life cycle assessment of flax fibres for the reinforcement of polymer matrix composites. PhD, 2011. University of Plymouth, PlymouthGoogle Scholar
  126. 126.
    Dissanayake N, Summerscales J, Grove SM, Singh MM (2009) J Biobased Mater Bioenergy 3(3):1CrossRefGoogle Scholar
  127. 127.
    Dissanayake N, Summerscales J, Grove SM, Singh MM (2009) J Nat Fibers 6(4):331CrossRefGoogle Scholar
  128. 128.
    Le Duigou A, Davies P, Baley C (2011) J Biobased Mater Bioenergy 5(1):153CrossRefGoogle Scholar
  129. 129.
    Garkhail S, Heijenrath RWH, Peijs T (2000) Appl Compos Mater 7:351CrossRefGoogle Scholar
  130. 130.
    Bos H, Mussig J, van den Oever MJA (2006) Compos A 37:1591CrossRefGoogle Scholar
  131. 131.
    Awal A, Cescutti G, Ghosh SB, Mussig J (2011) Compos A 42:50CrossRefGoogle Scholar
  132. 132.
    Oksman K (2001) J Reinf Plast Compos 20(7):621CrossRefGoogle Scholar
  133. 133.
    Weyenberg I, Chitruong T, Vangrimde B, Verpoest I (2006) Compos A 37:1368CrossRefGoogle Scholar
  134. 134.
    Roe P, Ansell MP (1985) J Mater Sci. doi: 10.1007/BF00552393 Google Scholar
  135. 135.
    Shah D, Schubel PJ, Licence P, Clifford MJ (2012) Compos Sci Technol 72:1909CrossRefGoogle Scholar
  136. 136.
    Madsen B, Hoffmeyer P, Lilholt H (2007) Compos A 38:2204CrossRefGoogle Scholar
  137. 137.
    Pan N (1993) Polym Compos 14(2):85CrossRefGoogle Scholar
  138. 138.
    Petrulis D (2003) Mater Sci 9:116Google Scholar
  139. 139.
    Hearle J, Grosberg P, Backer S (1969) Structural mechanics of yarns and fabrics. Vol. 1. Wiley-Interscience, New York, p 180Google Scholar
  140. 140.
    Petrulis D, Petrulyte S (2003) Fibres Text East Eur 11(1):16Google Scholar
  141. 141.
    Zarate C, Aranguren MI, Reboredo MM (2003) J Appl Polym Sci 89:2714CrossRefGoogle Scholar
  142. 142.
    Lee B, Kim HJ, Yu WR (2009) Fibers Polym 10(1):83CrossRefGoogle Scholar
  143. 143.
    Williams G, Wool RP (2000) Appl Compos Mater 7:421CrossRefGoogle Scholar
  144. 144.
    Devi L, Bhagawan SS, Thomas S (1997) J Appl Polym Sci 64(9):1739CrossRefGoogle Scholar
  145. 145.
    Hepworth D, Bruce DM, Vincent JFV, Jeronimidis G (2000) J Mater Sci. doi: 10.1023/A1004784931875 Google Scholar
  146. 146.
    Charlet K, Jernot JP, Gomina M, Bizet L, Bréard J (2010) J Compos Mater 44(24):2887CrossRefGoogle Scholar
  147. 147.
    Gassan J, Bledzki AK (1999) Compos Sci Technol 59:1303CrossRefGoogle Scholar
  148. 148.
    Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Compos A 36:1637CrossRefGoogle Scholar
  149. 149.
    Mutje P, Girones J, Lopez A, Llop MF, Vilaseca F (2006) J Reinf Plast Compos 25:313CrossRefGoogle Scholar
  150. 150.
    Beckwith S (2003). Natural fiber reinforcement materials: lower cost technology for composites applications, in composites fabrication, November/December 2003 p 12–16Google Scholar
  151. 151.
    Shahzad A (2012) Polym Compos 33(7):1129CrossRefGoogle Scholar
  152. 152.
    Rodríguez E, Petrucci R, Puglia D, Kenny JM, Vazquez A (2005) J Compos Mater 39(5):265CrossRefGoogle Scholar
  153. 153.
    George J, Ivens J, Verpoest I (1999) Die Angewandte Makromolekulare Chemie 272(1):41CrossRefGoogle Scholar
  154. 154.
    Gil R (2003). Forming and consolidation of textile composites. PhD, 2003. The University of Nottingham, NottinghamGoogle Scholar
  155. 155.
    Hughes M, Carpenter J, Hill C (2007) J Mater Sci. doi: 10.1007/s10853-006-1027-2 Google Scholar
  156. 156.
    Daniel M, Ishai O (1994) Engineering mechanics of composite materials. Oxford University Press, OxfordGoogle Scholar
  157. 157.
    Liang S, Gning PB, Guillaumat L (2012) Compos Sci Technol 72(5):535CrossRefGoogle Scholar
  158. 158.
    Phillips S, Baets J, Lessard L, Hubert P, Verpoest I (2013) Characterization of flax/epoxy prepregs before and after cure. J Reinf Plast Compos. doi: 10.1177/0731684412473359 Google Scholar
  159. 159.
    Meredith J, Coles SR, Powe R, Collings E, Cozien-Cazuc S, Weager B, Müssig J, Kirwan K (2013) Compos Sci Technol 80:31CrossRefGoogle Scholar
  160. 160.
    Sawpan M, Pickering KL, Fernyhough A (2012) J Compos Mater. doi: 10.1177/0021998312449028 Google Scholar
  161. 161.
    Mwaikambo L, Tucker N, Clark AJ (2007) Macromol Mater Eng 292:993CrossRefGoogle Scholar
  162. 162.
    Shah D (2013). Characterisation and optimisation of the mechanical performance of plant fibre composites for structural applications. PhD, 2013. University of Nottingham, NottinghamGoogle Scholar
  163. 163.
    Vallejos M, Espinach FX, Julián F, Torres LI, Vilaseca F, Mutjé P (2012) Compos Sci Technol 72:1209CrossRefGoogle Scholar
  164. 164.
    Serrano A, Espinach FX, Julian F, del Rey R, Mendez JA, Mutje P (2013) Compos B 50:232CrossRefGoogle Scholar
  165. 165.
    Cabral H, Cisneros M, Kenny JM, Vazquez A, Bernal CR (2005) J Compos Mater 39:51CrossRefGoogle Scholar
  166. 166.
    Cichocki JF, Thomason JL (2002) Compos Sci Technol 62:669CrossRefGoogle Scholar
  167. 167.
    Rao Y, Farris RJ (2000) J Appl Polym Sci 77:1938CrossRefGoogle Scholar
  168. 168.
    Naik N, Madhavan V (2000) J Strain Anal 35(2):83CrossRefGoogle Scholar
  169. 169.
    Zhang L, Miao M (2010) Compos Sci Technol 70:130CrossRefGoogle Scholar
  170. 170.
    Reussman T, Mieck P, Grützner R, Bayer R (1999) Kunststoffe Plast Europe 89:80Google Scholar
  171. 171.
    Boey F, Lye SW (1992) Composites 23(4):261CrossRefGoogle Scholar
  172. 172.
    Anderson J, Altan MC (2012) J Eng Mater Technol 134:1CrossRefGoogle Scholar
  173. 173.
    Ghiorse S (1993). Effect of void content on the mechanical properties of carbon/epoxy laminates, in SAMPE Quarterly, p 54Google Scholar
  174. 174.
    Madsen B, Thygesen A, Lilholt H (2007) Compos Sci Technol 67:1584CrossRefGoogle Scholar
  175. 175.
    Oksman K, Wallstrom L, Berglund LA, Filho RDT (2002) J Appl Polym Sci 84:2358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Oxford Silk Group, Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations