Journal of Materials Science

, Volume 48, Issue 19, pp 6605–6612 | Cite as

Diffuse scattering and the mechanism for the phase transition in triglycine sulphate

  • J. M. Hudspeth
  • D. J. Goossens
  • T. R. Welberry
  • M. J. Gutmann


Despite the order/disorder nature of its ferroelectric phase transition, and evidence for the evolution of local order as being important for understanding the transition, no comprehensive diffuse scattering study of the short-range order in triglycine sulphate, (TGS), (NH2CH2COOH)3H2SO4 has been undertaken. Diffuse scattering from single crystals is sensitive to two-body correlations, and can act as a probe of local structure, which in a second order phase transition acts as a precursor to the low temperature phase. The role of hydrogen bonding and dipolar interactions in the ferroelectric phase transition in TGS has been a long matter of conjecture. Using neutron and X-ray single crystal diffuse scattering this study shows that hydrogen bond mediated interactions between polarising glycine molecules cause local one-dimensional polarised domains to develop, oriented parallel to the b axis. These domains interact via dipolar interactions, and the three-dimensional ferroelectric order arises. This provides a real-space, interaction-based model for the phase transition in TGS, showing in detail how the local chemistry and physics give rise to the polarised state.


  1. 1.
    Barabash RI, Ice GE, Turchi PEA (eds) (2009) Diffuse scattering and the fundamental properties of materials, 1st edn. Momentum Press, Highland ParkGoogle Scholar
  2. 2.
    Chan EJ, Welberry TR, Goossens DJ, Heerdegen AP (2010) J Appl Crystallogr 43:913CrossRefGoogle Scholar
  3. 3.
    Choudhury RR, Chitra R (2008) Pramana J Phys 71:911CrossRefGoogle Scholar
  4. 4.
    Choudhury RR, Chitra R (2009) J Phys Condens Mat 21:335901CrossRefGoogle Scholar
  5. 5.
    Choudhury RR, Chitra R, Ramanadham M (2003) J Phys Condens Mat 15:4641CrossRefGoogle Scholar
  6. 6.
    Choudhury RR, Chitra R, Sastry PU, Das A, Ramanadham M (2004) Pramana J Phys 63:107CrossRefGoogle Scholar
  7. 7.
    Estermann MA, Steurer W (1998) Phase Transit 67:165CrossRefGoogle Scholar
  8. 8.
    Fletcher SR, Keve ET, Skapski AC (1976) Feroelectrics 14:775CrossRefGoogle Scholar
  9. 9.
    Fletcher SR, Keve ET, Skapski AC (1976) Feroelectrics 14:789CrossRefGoogle Scholar
  10. 10.
    Fujii Y, Yamada Y (1971) J Phys Soc Jpn 30:1676CrossRefGoogle Scholar
  11. 11.
    Gonzalo JA (1966) Phys Rev 144:662CrossRefGoogle Scholar
  12. 12.
    Goossens DJ, Gutmann MJ (2009) Phys Rev Lett 102:015,505CrossRefGoogle Scholar
  13. 13.
    Goossens DJ, Heerdegen AP, Chan EJ, Welberry TR (2011) Metall Mater Trans A 42:23CrossRefGoogle Scholar
  14. 14.
    Hoshino S, Okaya Y, Pepinsky R (1959) Phys Rev 115:323CrossRefGoogle Scholar
  15. 15.
    Hudspeth JM, Goossens DJ (2012) J Cryst Growth 338:177CrossRefGoogle Scholar
  16. 16.
    Hudspeth JM, Goossens DJ, Gutmann MJ, Studer AJ (2013) Cryst Res Technol 48(3):169CrossRefGoogle Scholar
  17. 17.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New YorkGoogle Scholar
  18. 18.
    Kay MI (1977) Ferroelectrics 17:415CrossRefGoogle Scholar
  19. 19.
    Kay MI, Kleinberg R (1973) Ferroelectrics 5:45CrossRefGoogle Scholar
  20. 20.
    Keen DA, Gutmann MJ, Wilson CC (2006) J Appl Cryst 39:714CrossRefGoogle Scholar
  21. 21.
    Kikuta T, Hamatake D, Tamazaki T, Nakatani N (2007) Ferroelectrics 347:65CrossRefGoogle Scholar
  22. 22.
    Kikuta T, Tamazaki T, Nakatani N (2010) Ferroelectrics 403:111CrossRefGoogle Scholar
  23. 23.
    Lines ME, Glass AM (2001) Principles and applications of ferroelectrics and related materials. Oxford University Press, New YorkCrossRefGoogle Scholar
  24. 24.
    Neder RB, Proffen T (2008) Diffuse scattering and defect structure simulations. Oxford University Press, New YorkCrossRefGoogle Scholar
  25. 25.
    Pura B, Przedmojski J (1973) Phys Lett A 43:217CrossRefGoogle Scholar
  26. 26.
    Scheidegger S, Estermann MA, Steurer W (2000) J Appl Cryst 33:35CrossRefGoogle Scholar
  27. 27.
    Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods (Oxford, UK) 9:671CrossRefGoogle Scholar
  28. 28.
    Schweika W (1998) Disordered alloys, diffuse scattering and Monte Carlo simulations. Springer, BerlinGoogle Scholar
  29. 29.
    Shibuya I, Mitsui T (1961) J Phys Soc Jpn 16:479CrossRefGoogle Scholar
  30. 30.
    Tripadus V, Aranghel D, Statescu M, Buchsteiner A (2008) Chem Phys 353:59CrossRefGoogle Scholar
  31. 31.
    Weber T, Estermann MA, Bürgi HB (2001) Acta Cryst B 57:579CrossRefGoogle Scholar
  32. 32.
    Welberry TR (2004) Diffuse X-ray Scattering and Models of Disorder. Oxford University Press, Oxford Google Scholar
  33. 33.
    Welberry TR, Goossens DJ, David WIF, Gutmann MJ, Bull MJ, Heerdegen AP (2003) J Appl Cryst 36:1440CrossRefGoogle Scholar
  34. 34.
    Welberry TR, Goossens DJ, Heerdegen AP, Lee PL (2005) Z Krist 220:1052Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. M. Hudspeth
    • 1
  • D. J. Goossens
    • 2
  • T. R. Welberry
    • 2
  • M. J. Gutmann
    • 3
  1. 1.Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia
  2. 2.Research School of ChemistryThe Australian National UniversityCanberraAustralia
  3. 3.ISIS Facility, Rutherford Appleton Laboratory DidcotUK

Personalised recommendations