Advertisement

Journal of Materials Science

, Volume 48, Issue 19, pp 6585–6596 | Cite as

High-temperature thin-film calorimetry: a newly developed method applied to lithium ion battery materials

  • Hendrik WulfmeierEmail author
  • Daniel Albrecht
  • Svetlozar Ivanov
  • Julian Fischer
  • Sven Ulrich
  • Andreas Bund
  • Holger Fritze
Article

Abstract

A thin-film calorimeter has been developed to investigate the thermodynamic properties of thin films including battery layer sequences. A new approach, i.e., the application of high-temperature stable piezoelectric resonators as highly sensitive planar temperature sensor, is chosen. Thin films with a thickness of several micrometers of the material of interest are deposited on the resonators. The production or consumption of latent heat by the active layer(s) results in temperature fluctuations with respect to surroundings, in our case the furnace in which the sensor is placed. The temperature fluctuations can be easily monitored in situ via changes of the resonance frequency of the resonator. This enables us to extract the temperature and time dependence of phase transformations as well as the associated enthalpies. To cover a temperature range from −20 to 1000 °C, high-temperature stable piezoelectric langasite (La3Ga5SiO14) resonators are applied. Initially, aluminum and tin layers are used to test the calorimeter. The temperature and enthalpy of the solid–liquid phase transformation agree well with the literature data. Further, the thermodynamic data of the battery materials to be used as cathode, solid electrolyte, and anode in lithium ion batteries are investigated by the newly developed method. The cathode materials Li(Ni0.8Co0.15Al0.05)O2-δ (NCA) and LiMn2O4-δ (LMO) are amorphous after deposition and crystallize during heating. NCA shows this transformation at 455 °C with an enthalpy of −4.8 J/g. LMO undergoes three phase transformations at 330, 410 and 600 °C. They require initially an activation which is followed by an exothermic enthalpy. The associated energies (activation; enthalpy) are (+67.2; −50.2) J/g, (+29.3; −29.3) J/g, and (+20.4; −26.2) J/g, respectively. The solid electrolyte Li3.4V0.6Si0.4O4-δ (LVSO) shows no phase transformation up to its decomposition at about 220 °C. The anode material molybdenum disulfide (MoS2) exhibits a phase transformation at 480 °C with an enthalpy of −183.2 J/g.

Keywords

Phase Transformation MoS2 Pulse Laser Deposition Bulk Acoustic Wave Spinel LiMn2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully thank the German Research Foundation (DFG) for the financial support within the priority program 1473 “WeNDeLIB”.

References

  1. 1.
    Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) Nat Mater 8:320CrossRefGoogle Scholar
  2. 2.
    Joho F, Novák P, Spahr ME (2002) J Electrochem Soc 149(8):A1020CrossRefGoogle Scholar
  3. 3.
    Maleki H, Al Hallaj S, Selman JR, Dinwiddie RB, Wang H (1999) J Electrochem Soc 146(3):947CrossRefGoogle Scholar
  4. 4.
    Balaya P (2008) Energy Environ Sci 1:645CrossRefGoogle Scholar
  5. 5.
    Chen X, Li C, Grätzel M, Kostecki R, Mao SS (2012) Chem Soc Rev 41:7909CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Fouchard D, Rea JR (1998) J Power Sources 70:16CrossRefGoogle Scholar
  7. 7.
    Wakihara M (2001) Mater Sci Eng R33:109Google Scholar
  8. 8.
    Armand M, Tarascon JM (2008) Nature 451:652CrossRefGoogle Scholar
  9. 9.
    Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) J Power Sources 147:269CrossRefGoogle Scholar
  10. 10.
    Vetter J, Winter M, Wohlfahrt-Mehrens M (2009) In: Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (eds) Encyclopedia of Electrochemical Power Sources. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Amatucci GG, Pereira N, Zheng T, Tarascon JM (2001) J Electrochem Soc 148:A171CrossRefGoogle Scholar
  12. 12.
    Palomares V, Rojo T (2012) In: Ilias Belharouak (Ed), Lithium Ion Batteries—New Developments, InTech, ISBN: 978-953-51-0077-5Google Scholar
  13. 13.
    Fritze H (2011) Meas Sci Technol 22:012002CrossRefGoogle Scholar
  14. 14.
    Ohtsuka H, Yamaki J (1989) Jpn J Appl Phys 28:2264CrossRefGoogle Scholar
  15. 15.
    Kuwata N, Kawamura J, Toribami K, Sata N, Hattori T (2004) Electrochem Commun 6(4):417CrossRefGoogle Scholar
  16. 16.
    Kawamura J, Kuwata N, Toribami K, Sata N, Kamishima O, Hattori T (2004) Solid State Ion 175:273CrossRefGoogle Scholar
  17. 17.
    Kuwata N, Kumar R, Toribami K, Suzuki T, Hattori T, Kawamura J (2006) Solid State Ion 177:2827CrossRefGoogle Scholar
  18. 18.
    Kuwata N, Iwagami N, Kawamura J (2009) Solid State Ion 180:644CrossRefGoogle Scholar
  19. 19.
    Whittingham MS (2004) Chem Rev 104:4271CrossRefGoogle Scholar
  20. 20.
    Kostecki R, McLarnon F (2004) Electrochem Solid State Lett 7(10):A380CrossRefGoogle Scholar
  21. 21.
    Fischer J, Adelhelm C, Bergfeldt T, Chang K, Ziebert C, Leiste H, Stüber M, Ulrich S, Music D, Hallstedt B, Seifert HJ (2012) Thin Solid Films 528:217CrossRefGoogle Scholar
  22. 22.
    Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Nature 392:694CrossRefGoogle Scholar
  23. 23.
    Yoshio M, Noguchi H (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Lithium-ion batteries: science and technologies. Springer, New YorkCrossRefGoogle Scholar
  24. 24.
    Tarascon JM, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  25. 25.
    Xu B, Fell CR, Chi M, Meng YS (2011) Energy Environ Sci 4:2223CrossRefGoogle Scholar
  26. 26.
    Hy S, Su WN, Chen JM, Hwang BJ (2012) J Phys Chem C 116(48):25242CrossRefGoogle Scholar
  27. 27.
    Ceder G, Mishra SK (1999) Electrochem Solid-State Lett 2(11):550CrossRefGoogle Scholar
  28. 28.
    Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H (2009) Mater Res Bull 44(9):1811CrossRefGoogle Scholar
  29. 29.
    Li A, Liu H, Zhu Z, Huang M, Yang Y (2006) J Mater Sci Technol 22(1):40Google Scholar
  30. 30.
    Dominko R, Arcon D, Mrzel A, Zorko A, Cevc P, Venturini P, Gaberscek M, Remskar M, Mihailovic D (2002) Adv Mater 14(21):1531CrossRefGoogle Scholar
  31. 31.
    Huggins RA (1999) J Power Sources 18–19:13CrossRefGoogle Scholar
  32. 32.
    Scrosati B (2000) Electrochim Acta 45(5–16):2461CrossRefGoogle Scholar
  33. 33.
    Hassoun J, Scrosati B (2010) Angew Chem 122:2421CrossRefGoogle Scholar
  34. 34.
    Au M, McWhorter S, Ajo H, Adams T, Zhao Y, Gibbs J (2010) J Power Sources 195(10):3333CrossRefGoogle Scholar
  35. 35.
    Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) J Power Sources 97–98:185CrossRefGoogle Scholar
  36. 36.
    Schneider T, Richter D, Doerner S, Fritze H, Hauptmann P (2005) Sens Actuators B 111–112:187CrossRefGoogle Scholar
  37. 37.
    Albrecht D, Wulfmeier H, Ivanov S, Bund A, Fritze H (2013) MRS Proceedings 1496. doi: 10.1557/opl.2013.126
  38. 38.
    Kong H, Wang J, Zhang H, Yin X, Zhang S, Liu Y, Cheng X, Gao L, Hu X, Jiang M (2003) J Cryst Growth 254:360CrossRefGoogle Scholar
  39. 39.
    Lide DR (2003) CRC Handbook of Chemistry and Physics, 84th edn. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Fritze H, Tuller HL (2002) High-temperature balance. US Patent No 6 370 955Google Scholar
  41. 41.
    Wilthan B (2013) Status of round robin tests. Workshop of the GEFTA thermophysics working group, Dresden, March 18–19Google Scholar
  42. 42.
    Wojtczak L (1967) Phys Stat Sol 23:K163CrossRefGoogle Scholar
  43. 43.
    Sauerbrey G (1959) Zeitschrift für Physik A 155:206CrossRefGoogle Scholar
  44. 44.
    Yoon WS, Chung KY, McBreen J, Yang XQ (2006) Electrochem Comm 8:1257CrossRefGoogle Scholar
  45. 45.
    JCPDS database, pdf card number 000271252Google Scholar
  46. 46.
    JCPDS database, pdf card number 000350782Google Scholar
  47. 47.
    Julien CM, Massot M (2003) Mater Sci Eng B97:217CrossRefGoogle Scholar
  48. 48.
    Julien CM, Massot M (2003) Mater Sci Eng B100:69CrossRefGoogle Scholar
  49. 49.
    Kuchling H (1978) Taschenbuch der Physik. Verlag Harri Deutsch, ThunGoogle Scholar
  50. 50.
    Hollemann AF, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102nd edn. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  51. 51.
    Ravelo R, Baskes M (1997) Phys Rev Lett 79(13):2482CrossRefGoogle Scholar
  52. 52.
    Wolf G, Schmidt H-G, Bohmhammel K (1994) Thermochim Acta 235:23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hendrik Wulfmeier
    • 1
    Email author
  • Daniel Albrecht
    • 1
  • Svetlozar Ivanov
    • 2
  • Julian Fischer
    • 3
  • Sven Ulrich
    • 3
  • Andreas Bund
    • 2
  • Holger Fritze
    • 1
  1. 1.Institute of Energy Research and Physical TechnologiesClausthal University of TechnologyGoslarGermany
  2. 2.Department of Electrochemistry and ElectroplatingIlmenau University of TechnologyIlmenauGermany
  3. 3.Institute for Applied Materials (IAM-AWP)Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations