Journal of Materials Science

, Volume 48, Issue 19, pp 6558–6566 | Cite as

Inertial stabilization of flexible polymer micro-lattice materials

  • Sha Yin
  • Alan J. Jacobsen
  • Linzhi Wu
  • Steven R. Nutt


Soft micro-lattice materials with different lattice geometries were fabricated using a self-propagating photopolymer waveguide process. The parent polymer was characterized by dynamic mechanical analysis and the glass transition temperature shifted with equivalent strain rate. Quasi-static and dynamic compression tests were subsequently carried out to investigate the inertial stabilization of lattice member buckling as a function of strain rate and structural geometry (e.g. relative density and lattice aspect ratio). A high-speed digital camera was used to record the progression of deformation and failure events during compression. The micro-lattice structures exhibited super compressibility and increased strength. The observed strength increase, particularly for high aspect ratio and high strain rate, was attributed to inertial stabilization.


High Strain Rate Dynamic Mechanical Analysis Increase Strain Rate Lattice Geometry Parent Polymer 



S. Nutt acknowledges support from the Mc. Gill Composites Center. L.Z. Wu would like to thank the Major State Basic Research Development Program of China (973 Program, No. 2011CB610303). S. Yin gratefully acknowledges the support from China Scholarship Council (CSC) during the visit at University of Southern California.


  1. 1.
    Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG (2001) Prog Mater Sci 46(3–4):309CrossRefGoogle Scholar
  2. 2.
    Wang J, Evans AG, Dharmasena K, Wadley HNG (2003) Int J Solids Struct 40(25):6981CrossRefGoogle Scholar
  3. 3.
    Chiras S, Mumm DR, Evans AG, Wicks N, Hutchinson JW, Dharmasena K, Wadley HNG, Fichter S (2002) Int J Solids Struct 39(15):4093CrossRefGoogle Scholar
  4. 4.
    Rathbun HJ, Wei Z, He MY, Zok FW, Evans AG, Sypeck DJ, Wadley HNG (2004) J Appl Mech 71(3):368CrossRefGoogle Scholar
  5. 5.
    Kooistra GW, Deshpande VS, Wadley HNG (2004) Acta Mater 52(14):4229CrossRefGoogle Scholar
  6. 6.
    Queheillalt DT, Wadley HNG (2005) Mater Sci Eng A 397(1–2):132Google Scholar
  7. 7.
    Bele E, Bouwhuis BA, Hibbard GD (2008) Mater Sci Eng A 489(1–2):29Google Scholar
  8. 8.
    Wadley HNG (2006) Philos Trans R Soc A 364(1838):31CrossRefGoogle Scholar
  9. 9.
    Wadley HNG (2002) Adv Eng Mater 4(10):726CrossRefGoogle Scholar
  10. 10.
    Wadley HNG, Fleck NA, Evans AG (2003) Compos Sci Technol 63(16):2331CrossRefGoogle Scholar
  11. 11.
    Steeves CA, He MY, Kasen SD, Valdevit L, Wadley HNG, Evans AG (2009) J Appl Mech 76(3):9Google Scholar
  12. 12.
    Valdevit L, Vermaak N, Zok FW, Evans AG (2008) J Appl Mech 75(6):061022CrossRefGoogle Scholar
  13. 13.
    Bouwhuis B, Bele E, Hibbard G (2008) J Mater Sci 43(9):3267. doi: 10.1007/s10853-008-2529-x CrossRefGoogle Scholar
  14. 14.
    Yin S, Wu L, Ma L, Nutt S (2012) Composites Part B 43(4):1749CrossRefGoogle Scholar
  15. 15.
    Yin S, Wu L, Ma L, Nutt S (2011) Compos Struct 93(12):3104CrossRefGoogle Scholar
  16. 16.
    Sharp DN, Campbell M, Dedman ER, Harrison MT, Denning RG, Turberfield AJ (2002) Opt Quantum Electron 34(1–3):3CrossRefGoogle Scholar
  17. 17.
    Haske W, Chen VW, Hales JM, Dong W, Barlow S, Marder SR, Perry JW (2007) Opt Express 15(6):3426CrossRefGoogle Scholar
  18. 18.
    Jacobsen AJ, Barvosa-Carter W, Nutt S (2007) Adv Mater 19(22):3892CrossRefGoogle Scholar
  19. 19.
    Jacobsen AJ, Barvosa-Carter W, Nutt S (2007) Acta Mater 55(20):6724CrossRefGoogle Scholar
  20. 20.
    Jacobsen AJ, Barvosa-Carter W, Nutt S (2008) Acta Mater 56(6):1209CrossRefGoogle Scholar
  21. 21.
    Sarva SS, Deschanel S, Boyce MC, Chen W (2007) Polymer 48(8):2208CrossRefGoogle Scholar
  22. 22.
    Yi J, Boyce MC, Lee GF, Balizer E (2006) Polymer 47(1):319CrossRefGoogle Scholar
  23. 23.
    McShane GJ, Stewart C, Aronson MT, Wadley HNG, Fleck NA, Deshpande VS (2008) Int J Solids Struct 45(16):4407CrossRefGoogle Scholar
  24. 24.
    Park S, Russell BP, Deshpande VS, Fleck NA (2012) Composites Part A 43(3):527CrossRefGoogle Scholar
  25. 25.
    Song B, Chen WW, Dou S, Winfree NA, Kang JH (2005) Int J Impact Eng 31(5):509CrossRefGoogle Scholar
  26. 26.
    Kazemahvazi S, Russell BP, Zenkert D (2012) Compos Struct 94(11):3300CrossRefGoogle Scholar
  27. 27.
    Xue Z, Hutchinson JW (2006) Int J Numer Methods Eng 65(13):2221CrossRefGoogle Scholar
  28. 28.
    Vaziri A, Xue ZY (2007) J Mech Mater Struct 2(9):1743CrossRefGoogle Scholar
  29. 29.
    Vaziri A, Xue ZY, Hutchinson JW (2007) J Mech Mater Struct 2(10):1947CrossRefGoogle Scholar
  30. 30.
    Hou B, Zhao H, Pattofatto S, Liu JG, Li YL (2012) Int J Solids Struct 49(19–20):2754CrossRefGoogle Scholar
  31. 31.
    Tang X, Prakash V, Lewandowski JJ, Koolstra GW, Wadley HNG (2007) Acta Mater 55(8):2829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sha Yin
    • 1
    • 2
  • Alan J. Jacobsen
    • 3
  • Linzhi Wu
    • 2
  • Steven R. Nutt
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Center for Composite MaterialsHarbin Institute of TechnologyHarbinChina
  3. 3.HRL Laboratories LLCMalibuUSA

Personalised recommendations