Journal of Materials Science

, Volume 48, Issue 19, pp 6535–6541 | Cite as

Microstructure and mechanical properties of two-phase Fe30Ni20Mn20Al30: part II mechanical properties

Article
  • 257 Downloads

Abstract

This paper describes the mechanical properties of B2/L21 two-phase Fe30Ni20Mn20Al30 (at.%) in both the as-cast condition and after a 72 h anneal at 823 K. The temperature dependence of the compressive strength of Fe30Ni20Mn20Al30 showed three distinct regions: (1) brittle fracture at low temperature, (2) plastic flow with a rapid decline in yield strength from 1500 to 250 MPa from the brittle-to-ductile transition temperature (BDTT) to 873 K, and (3) a slight decrease in yield strength to ~150 MPa from 873 to 1073 K. Interestingly, the BDTT (573 K) exhibited by the coarser microstructure present in 72 h annealed material was lower than that of the as-cast alloy (623 K). Using both differential scanning calorimetry and in situ heating in a transmission electron microscope, an L21-to-B2 transition was found at 750 ± 25 K. A mixture of intergranular fracture and transgranular cleavage was observed after room temperature compression while only cleavage was found at 673 K. All the specimens deformed extensively without fracture when tested at temperatures higher than 673 K. The strain rate had little effect on the strength at 573 K and a moderate effect at 873 K with a strain-rate sensitivity exponent value of 0.1.

References

  1. 1.
    Hanna JA, Baker I, Wittmann MW, Munroe PR (2005) J Mater Res 20:791CrossRefGoogle Scholar
  2. 2.
    Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) Microsc Microanal 11:1864Google Scholar
  3. 3.
    Baker I, Hanna JA, Wittmann MW, Munroe PR (2005) In: The mechanical properties of Fe30Ni20Mn25Al25, TMS proceedings: processing and fabrication of advanced materials XIV with frontiers in materials science 2005: innovative materials and manufacturing techniques, p 237Google Scholar
  4. 4.
    Loudis JA, Baker I (2008) Microsc Res Tech 71:489CrossRefGoogle Scholar
  5. 5.
    Loudis JA, Boyd TC, Coen D, Baker I (2007) Proc Mater Res Soc 980:0980-II01-02Google Scholar
  6. 6.
    Loudis JA, Baker I (2007) Philos Mag 87:5639CrossRefGoogle Scholar
  7. 7.
    Baker I, Zheng RK, Saxey DW, Kuwano S, Wittmann MW, Loudis JA, Prasad KS, Liu Z, Marceau R, Ringer SP (2009) Intermetallics 17:886CrossRefGoogle Scholar
  8. 8.
    Wu X, Baker I, Miller MK, More KL (2009) Microsc Microanal 15:2116Google Scholar
  9. 9.
    Wittmann MW, Baker I, Hanna JA, Munroe PR (2004) MRS proceedings, vol 842, pp S5–S17Google Scholar
  10. 10.
    Polvani RS, Tzeng WS, Strutt PR (1976) Metall Trans A 7:33CrossRefGoogle Scholar
  11. 11.
    Strutt PR, Kear BH (1985) Proc Mater Res Soc 39:279CrossRefGoogle Scholar
  12. 12.
    Tian WH, Oh-ishi K, Nemoto M (2001) Acta Metall Sin (Engl Lett) 14(5):313Google Scholar
  13. 13.
    Han CS (2007) Korean J Mater Res 17(8):420CrossRefGoogle Scholar
  14. 14.
    Oh-ishi K, Horita Z, Nemoto M (1997) Mater Trans JIM 38(2):99Google Scholar
  15. 15.
    Oh-ishi K, Nemoto M (1997) J Jpn Inst Met 61:282Google Scholar
  16. 16.
    Oh-ishi K, Horita Z, Nemoto M (1997) Mater Sci Eng A 239–240:472Google Scholar
  17. 17.
    Takeyama M, Liu CT (1990) J Mater Res 5(6):1189CrossRefGoogle Scholar
  18. 18.
    Liao Y (2009) PhD Thesis, Dartmouth CollegeGoogle Scholar
  19. 19.
    Wittmann MW, Baker I, Munroe PR (2004) Philos Mag 84(29):3169CrossRefGoogle Scholar
  20. 20.
    Baker I, Xiao H, Klein O, Nelson C, Whittenberger JD (1995) Acta Metall Mater 43:1723CrossRefGoogle Scholar
  21. 21.
    Baker I (1995) Mater Sci Eng A 192/193:1CrossRefGoogle Scholar
  22. 22.
    Bowman RR, Noebe RD, Raj SV, Locci IE (1992) Metall Mater Trans 23A:1493Google Scholar
  23. 23.
    Noebe RD, Bowman RR, Cullers CL, Raj SV (1991) Mater Res Soc Symp Proc 213:589CrossRefGoogle Scholar
  24. 24.
    Wu X, Baker I (2013) Microsc Res Technol 76:263CrossRefGoogle Scholar
  25. 25.
    Von Mises R (1928) Zeitschr Angew Math Mech 8:161CrossRefGoogle Scholar
  26. 26.
    Miracle DB (1993) Acta Metall Mater 41:649CrossRefGoogle Scholar
  27. 27.
    Wu X, Baker I, Wu H, Munroe PR (2012) Intermetallics 23:116CrossRefGoogle Scholar
  28. 28.
    Rosenhain W, Ewen D (1913) J Inst Met 10:119Google Scholar
  29. 29.
    Dieter GE (1984) Mechanical metallurgy. McGraw-Hill Press, New York, p 453Google Scholar
  30. 30.
    Xiao H, Baker H (1993) Scr Metall Mater 28:1411CrossRefGoogle Scholar
  31. 31.
    Hahn KH, Vedula K (1989) Scr Metall 23:7CrossRefGoogle Scholar
  32. 32.
    Raj SV, Noebe RD, Bowman RR (1989) Scr Metall 23:2049CrossRefGoogle Scholar
  33. 33.
    Yang WJ, Dodd RA (1973) Met Sci 7:41Google Scholar
  34. 34.
    Stein DF (1968) In: Rosenfield AR, Hahn GT, Bement AL, Jaffee RI (eds) Dislocation dynamics. McGraw-Hill Press, New York, p 453Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Thayer School of Engineering, Dartmouth CollegeHanoverUSA
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations