Advertisement

Journal of Materials Science

, Volume 48, Issue 18, pp 6393–6403 | Cite as

Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol

  • R. Wallace
  • A. P. Brown
  • R. Brydson
  • K. Wegner
  • S. J. Milne
Article

Abstract

There is uncertainty concerning the potential toxicity of zinc oxide (ZnO) nanoparticles, which may be attributed in part to a lack of understanding with regard to the physiochemical properties of the nanoparticles used in toxicological investigations. This paper reports the synthesis of a ZnO nanopowder by flame spray pyrolysis and demonstrates that the typically employed characterisation techniques such as specific surface area measurement and X-ray diffraction provide insufficient information on the sample, especially if it is intended for use in toxicity studies. Instead, a more elaborate characterisation protocol is proposed that includes particle morphology as well as detailed compositional analysis of the nanoparticle surface. Detailed transmission electron microscopy analysis illustrated the polydispersity within the sample: particles were elongated in the c-crystallographic direction, with average Ferret length ~23 nm and Ferret width ~14 nm. Dynamic light scattering (0.1 w/v% in deionised water, pH 7.4) revealed the particles were agglomerated with a modal secondary particle size of ~1.5 μm. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated the presence of carbonate and hydroxide impurities on the surface of the ZnO nanoparticles and an increase of such impurities was observed as the sample was aged, which might influence the nanoparticle dissolution and/or cellular uptake behaviour. These data will be utilised, in order to facilitate the interpretation and understanding of results from toxicological investigations using in vitro cell lines.

Keywords

Dynamic Light Scattering Zinc Oxide Zincite Flame Spray Pyrolysis Zinc Nitrate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 229244 (ENNSATOX). K. Wegner gratefully acknowledges financial support by the European Research Council (ERC project “FlameNanoManufacture”, contract #247283).

References

  1. 1.
    Johnson JC, Knutsen KP, Yan H, Law M, Zhang Y, Yang P, Saykally RJ (2004) Nano Lett 4(2):197. doi: 10.1021/nl034780w CrossRefGoogle Scholar
  2. 2.
    Zhang L, Jiang Y, Ding Y, Povey M, York D (2006) J Nanopart Res 9(3):479. doi: 10.1007/s11051-006-9150-1 CrossRefGoogle Scholar
  3. 3.
    Padmavathy N, Vijayaraghavan R (2008) Sci Technol Adv Mater 9(3):035004. doi: 10.1088/1468-6996/9/3/035004 CrossRefGoogle Scholar
  4. 4.
    Yamamoto O (2001) Int J Inorg Mater 3(7):643. doi: 10.1016/S1466-6049(01)00197-0 CrossRefGoogle Scholar
  5. 5.
    Mitchnick M, Fairhurst D, Pinell S (1999) J Am Acad Dermatol 40(1):85. doi: 10.1016/S0190-9622(99)70532-3 CrossRefGoogle Scholar
  6. 6.
    Gustavsson Gonzalez H, Farbrot A, Larko O (2002) Clin Exp Dermatol 27(8):691. doi: 10.1046/j.1365-2230.2002.01095.x CrossRefGoogle Scholar
  7. 7.
    Liufu S, Xiao H, Li Y (2005) Mater Lett 59(27):3494. doi: 10.1016/j.matlet.2005.06.020 CrossRefGoogle Scholar
  8. 8.
    Shen L, Bao N, Yanagisawa K, Domen K, Gupta A, Grimes CA (2006) Nanotechnology 17(20):5117. doi: 10.1088/0957-4484/17/20/013 CrossRefGoogle Scholar
  9. 9.
    Wang L, Muhammed M (1999) J Mater Chem 9(11):2871. doi: 10.1039/a907098b CrossRefGoogle Scholar
  10. 10.
    Wu R, Xie C, Xia H, Hu J, Wang A (2000) J Cryst Growth 217(3):274. doi: 10.1016/S0022-0248(00)00506-6 CrossRefGoogle Scholar
  11. 11.
    Suchanek WL (2009) J Cryst Growth 312(1):100. doi: 10.1016/j.jcrysgro.2009.09.051 CrossRefGoogle Scholar
  12. 12.
    Baruah S, Dutta J (2009) Sci Technol Adv Mater 10(1):013001. doi: 10.1088/1468-6996/10/1/013001 CrossRefGoogle Scholar
  13. 13.
    Meulenkamp EA (1998) J Phys Chem B 102(29):5566. doi: 10.1021/jp980730h CrossRefGoogle Scholar
  14. 14.
    Mondelaers D, Vanhoyland G, Van Den Rul H, D’haen J, Van Bael M, Mullens J, Van Poucke L (2002) Mater Res Bull 37(5):901CrossRefGoogle Scholar
  15. 15.
    Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) J Mater Res 10(1):77. doi: 10.1557/JMR.1995.0077 CrossRefGoogle Scholar
  16. 16.
    Hsieh C-H (2007) J Chin Chem Soc 54:31Google Scholar
  17. 17.
    Auer G, Woditsch P, Westerhaus K, Kischkewitz J, Griebler W-D, De Liedekerke M (2009) Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley, Weinheim, p 286Google Scholar
  18. 18.
    Teoh WY, Amal R, Mädler L (2010) Nanoscale 2(8):1324. doi: 10.1039/c0nr00017e CrossRefGoogle Scholar
  19. 19.
    Jensen JR, Johannessen T, Livbjerg H (2000) J Aerosol Sci 31(1):216CrossRefGoogle Scholar
  20. 20.
    Matsoukas T, Friedlander SK (1991) J Colloid Interface Sci 146(2):495. doi: 10.1016/0021-9797(91)90213-R CrossRefGoogle Scholar
  21. 21.
    Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SECG et al (2009) Regul Toxicol Pharm 53(1):52. doi: 10.1016/j.yrtph.2008.10.008 CrossRefGoogle Scholar
  22. 22.
    Mädler L, Kammler H, Mueller R, SE P (2002) J Aerosol Sci 33:369CrossRefGoogle Scholar
  23. 23.
    Strobel R, Baiker A, Pratsinis SE (2006) Adv Powder Technol 17(5):457. doi: 10.1163/156855206778440525 CrossRefGoogle Scholar
  24. 24.
    Athanassiou EK, Grass RN, Stark WJ (2010) Aerosol Sci Technol 44(2):161. doi: 10.1080/02786820903449665 CrossRefGoogle Scholar
  25. 25.
    Marshall BS, Telford I, Wood R (1971) Analyst 96(145):569CrossRefGoogle Scholar
  26. 26.
    Carroz JW, Odencrantz FK, Finnegan WG, Drehmel DC (1980) Am Ind Hyg Assoc J 41(2):77. doi: 10.1080/15298668091424401 CrossRefGoogle Scholar
  27. 27.
    Tani T, Mädler L, Pratsinis S (2002) J Nanopart Res 4:337Google Scholar
  28. 28.
    Strobel R, Pratsinis SE (2011) Phys Chem Chem Phys 13(20):9246. doi: 10.1039/c0cp01416h CrossRefGoogle Scholar
  29. 29.
    Liewhiran C, Phanichphant S (2007) Sensors 7(2):185. doi: 10.3390/s7020185 CrossRefGoogle Scholar
  30. 30.
    Height MJ, Mädler L, Pratsinis SE, Krumeich F (2006) Chem Mater 18(2):572. doi: 10.1021/cm052163y CrossRefGoogle Scholar
  31. 31.
    Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Langmuir 27(10):6059. doi: 10.1021/la200570n CrossRefGoogle Scholar
  32. 32.
    Dange C, Phan TNT, André V, Rieger J, Persello J, Foissy A (2007) J Colloid Interface Sci 315(1):107. doi: 10.1016/j.jcis.2007.03.068 CrossRefGoogle Scholar
  33. 33.
    Degen A, Kosec M (2000) J Eur Ceram Soc 20(6):667CrossRefGoogle Scholar
  34. 34.
    Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI et al (2008) ACS Nano 2(10):2121. doi: 10.1021/nn800511k CrossRefGoogle Scholar
  35. 35.
    George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A et al (2010) ACS Nano 4(1):15. doi: 10.1021/nn901503q CrossRefGoogle Scholar
  36. 36.
    Vandebriel R, De Jong W (2012) Nanotechnol Sci Appl 61. doi: 10.2147/NSA.S23932
  37. 37.
    Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Toxicol Lett 199(3):389. doi: 10.1016/j.toxlet.2010.10.003 CrossRefGoogle Scholar
  38. 38.
    Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Appl Phys Lett 90(213902):2139021. doi: 10.1063/1.2742324 Google Scholar
  39. 39.
    Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Particle Fibre Toxicol 8(1):10. doi: 10.1186/1743-8977-8-10 CrossRefGoogle Scholar
  40. 40.
    Berntsen P, Park CY, Rothen-Rutishauser B, Tsuda A, Sager TM, Molina RM, Donaghey TC et al (2010) J R Soc Interface 7(Suppl 3):S331. doi: 10.1098/rsif.2010.0068.focus CrossRefGoogle Scholar
  41. 41.
    Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanotechnology 20(11):115101. doi: 10.1088/0957-4484/20/11/115101 CrossRefGoogle Scholar
  42. 42.
    Hsiao I-L, Huang Y-J (2011) Sci Total Environ 409(7):1219. doi: 10.1016/j.scitotenv.2010.12.033 CrossRefGoogle Scholar
  43. 43.
    Müller KH, Kulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP et al (2010) ACS Nano 4(11):6767. doi: 10.1021/nn101192z CrossRefGoogle Scholar
  44. 44.
    Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) Chem Res Toxicol 23(4):733. doi: 10.1021/tx900203v CrossRefGoogle Scholar
  45. 45.
    Pan Z, Tao J, Zhu Y, Huang J-F, Paranthaman MP (2010) Chem Mater 22(1):149. doi: 10.1021/cm902734e CrossRefGoogle Scholar
  46. 46.
    Xu R, Di Guida OA (2003) Powder Technol 132(2–3):145–153. doi: 10.1016/S0032-5910(03)00048-2 CrossRefGoogle Scholar
  47. 47.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, LondonGoogle Scholar
  48. 48.
    Malvern Instruments (2000) Dynamic light scattering: an introduction in 30 minutes. Retrieved January 14, 2013, from http://www.malvern.com/common/downloads/campaign/MRK656-01.pdf
  49. 49.
    Bang J, Yang H, Holloway PH (2006) Nanotechnology 17(4):973. doi: 10.1088/0957-4484/17/4/022 CrossRefGoogle Scholar
  50. 50.
    Wahab R, Ansari SG, Kim YS, Song M, Shin H-S (2009) Appl Surf Sci 255(9):4891. doi: 10.1016/j.apsusc.2008.12.037 CrossRefGoogle Scholar
  51. 51.
    Hondow N, Brydson R, Wang P, Holton MD, Brown MR, Rees P, Summers HD et al (2012) J Nanopart Res 14(7). doi: 10.1007/s11051-012-0977-3
  52. 52.
    Umar A, Rahman MM, Vaseem M, Hahn Y-B (2009) Electrochem Commun 11(1):118. doi: 10.1016/j.elecom.2008.10.046 CrossRefGoogle Scholar
  53. 53.
    Li Y, Wu K, Zhitomirsky I (2010) Colloids Surf A 356(1–3):63. doi: 10.1016/j.colsurfa.2009.12.037 CrossRefGoogle Scholar
  54. 54.
    Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, ChichesterGoogle Scholar
  55. 54.
    Klimm D, Schulz D, Ganschow S (2011) Compd Semicond Sci Technol 3:302CrossRefGoogle Scholar
  56. 56.
    Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Environ Toxicol Chem 31(1):93. doi: 10.1002/etc.708 CrossRefGoogle Scholar
  57. 57.
    Gröhn AJ, Pratsinis SE, Wegner K (2012) Chem Eng J 191:491. doi: 10.1016/j.cej.2012.02.093 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • R. Wallace
    • 1
  • A. P. Brown
    • 1
  • R. Brydson
    • 1
  • K. Wegner
    • 2
  • S. J. Milne
    • 1
  1. 1.Institute for Materials ResearchSPEME, University of LeedsLeedsUK
  2. 2.Particle Technology Laboratory, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland

Personalised recommendations